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1. Introduction 

This study theoretically characterizes the optimal control path of a two-location 

economy in which production/consumption has a positive externality while infectious 

disease, such as COVID-19, has a negative (dynamic) externality. 

The model is based on Bobashev et al. (2011), Bethune and Korinek (2020), Alvarez 

et al. (2020), and Eichenbaum et al. (2020), Akamatsu, et al. (2020)  and Olivares et al. 

(2020), which follow the seminal works of Kremack and McKendrick (1927) and 

Anderson and May (1991), but taking into account the fact that COVID-19 has been 

mostly transmitted between regions not by migrants but by travelers or commuters, it 

assumes the residents do not migrate. Instead, it assumes the disease is transmitted 

through the economic activities of the residents over the regions as well as within each 

region. 

  

2. The Model 

The basic model is described as follows. Consider an economy with two locations: 𝑖 =

1, 2 (e.g., the center and the suburb in a city.) The population of region 𝑖 is denoted by 

𝑁𝑖  and assumed to be constant over time. The number of susceptible, infected, and 

recovered residents in location 𝑖  in period 𝑡  are denoted by 𝑆𝑖𝑡 , 𝐼𝑖𝑡 , and 𝑅𝑖𝑡 , 
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respectively. Their changes are affected by the domestic activity levels of the residents 

of type 𝑍 = 𝑆, 𝐼, 𝑅, those of the residents who visit the other location (and back home,) 

and those of the residents who are visiting from the other region, represented by  𝛽0𝑖𝑖𝑡, 

𝛽1𝑖𝑗𝑡, and 𝛽2𝑗𝑖𝑡: 

 �̇�𝑖𝑡 = −(𝛽0𝑖𝑖𝑡𝐼𝑖𝑡𝑆𝑖𝑡 + 𝛽1𝑖𝑗𝑡𝐼𝑗𝑡𝑆𝑖𝑡 + 𝛽2𝑗𝑖𝑡𝐼𝑗𝑡𝑆𝑖𝑡) 

𝐼�̇�𝑡 = 𝛽0𝑖𝑖𝑡𝐼𝑖𝑡𝑆𝑖𝑡 + 𝛽1𝑖𝑗𝑡𝐼𝑗𝑡𝑆𝑖𝑡 + 𝛽2𝑗𝑖𝑡𝐼𝑗𝑡𝑆𝑖𝑡 − 𝛾𝑖𝐼𝑖𝑡 , 

�̇�𝑖𝑡 = 𝛾𝑖𝐼𝑖𝑡 

(1) 

where 𝛾𝑖   is the rate of recovery. Also, assume that each activity level is a linear function 

of the consumption of the corresponding good. 

  𝛽0𝑖𝑖𝑡 = 𝛽0𝑥𝑖𝑖𝑡
𝑆 𝑥𝑖𝑖𝑡

𝐼 ,    𝛽1𝑖𝑗𝑡 = 𝛽1𝑥𝑖𝑗𝑡
𝑆 𝑥𝑗𝑗𝑡

𝐼 ,    𝛽2𝑗𝑖𝑡 = 𝛽2𝑥𝑖𝑖𝑡
𝑆 𝑥𝑗𝑖𝑡

𝐼 , 

𝑥∙∙𝑡
𝑍 ≤ 1,     𝑍 = 𝑆, 𝐼, 𝑅. 

(2) 

The utility is characterized by: 

 𝑢𝑖𝑡
𝑍 = {

𝑢(𝑥𝑖𝑖𝑡
𝑍 , 𝑥𝑖𝑗𝑡

𝑍 ; 𝑋𝑖𝑡, 𝑋𝑗𝑡)    for    𝑍 = 𝑆, 𝑅,    

𝑢(𝑥𝑖𝑖𝑡
𝑍 , 𝑥𝑖𝑗𝑡

𝑍 ; 𝑋𝑖𝑡, 𝑋𝑗𝑡) − 𝑐    for    𝑍 = 𝐼    
, (3) 

where production/consumption externality 𝑋𝑖𝑡 is characterized by, 

 𝑋𝑖𝑡 ≡ ∑(𝜙𝑐 + 𝜙0𝑍𝑖𝑡𝑥𝑖𝑖𝑡
𝑍 + 𝜙2𝑍𝑗𝑡𝑥𝑗𝑖𝑡

𝑍 )

𝑍

,    𝑍 = 𝑆, 𝐼, 𝑅. (4) 

Specify 𝑢 as follows: 

 𝑢(𝑥𝑖𝑖𝑡
𝑍 , 𝑥𝑖𝑗𝑡

𝑍 ;  𝑋𝑖𝑡 , 𝑋𝑗𝑡) = 𝑋𝑖𝑡(𝑥𝑖𝑖𝑡
𝑍 )

𝜎
+ 𝜃𝑋𝑗𝑡(𝑥𝑖𝑗𝑡

𝑍 )
𝜎

, (5) 

For the command optimum, the maximand is, 
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 𝑉 = ∫ 𝑒−𝜌𝑡
𝑇

0

∑{𝑆𝑖𝑡𝑢(𝑥𝑖𝑖𝑡
𝑆 , 𝑥𝑖𝑗𝑡

𝑆 ; 𝑋𝑖𝑡, 𝑋𝑗𝑡) + 𝐼𝑖𝑡[𝑢(𝑥𝑖𝑖𝑡
𝐼 , 𝑥𝑖𝑗𝑡

𝐼 ; 𝑋𝑖𝑡, 𝑋𝑗𝑡) − 𝑐]

𝑖

 

                         +𝑅𝑖𝑡𝑢(𝑥𝑖𝑖𝑡
𝑅 , 𝑥𝑖𝑗𝑡

𝑅 ; 𝑋𝑖𝑡, 𝑋𝑗𝑡)}𝑑𝑡 − Φ(𝐼1𝑇, 𝐼2𝑇),    𝑗 ≠ 𝑖. 

(6) 

The Hamiltonian is:  

 𝐻 = 𝑒−𝜌𝑡{(𝑁1 − 𝐼1𝑡 − 𝑅1𝑡)𝑢(𝑥11𝑡
𝑆 , 𝑥12𝑡

𝑆 ; 𝑋1𝑡, 𝑋2𝑡) 

        +𝐼1𝑡[𝑢(𝑥11𝑡
𝐼 , 𝑥12𝑡

𝐼 ;  𝑋1𝑡 , 𝑋2𝑡) − 𝑐] + 𝑅1𝑡𝑢(𝑥11𝑡
𝑅 , 𝑥12𝑡

𝑅 ; 𝑋1𝑡, 𝑋2𝑡) 

        +(𝑁2 − 𝐼2𝑡 − 𝑅2𝑡)𝑢(𝑥22𝑡
𝑆 , 𝑥21𝑡

𝑆 ; 𝑋2𝑡, 𝑋1𝑡) 

        +𝐼2𝑡[𝑢(𝑥22𝑡
𝐼 , 𝑥21𝑡

𝐼 ;  𝑋2𝑡 , 𝑋1𝑡) − 𝑐] + 𝑅2𝑡𝑢(𝑥22𝑡
𝑅 , 𝑥21𝑡

𝑅 ; 𝑋2𝑡, 𝑋1𝑡)} 

       +λ1𝑡
𝐼 {(𝑁1 − 𝐼1𝑡 − 𝑅1𝑡)[𝛽0 11𝑡𝐼1𝑡 + (𝛽1 12𝑡 + 𝛽2 21𝑡)𝐼2𝑡] − 𝛾1𝐼1𝑡} 

       +λ2𝑡
𝐼 {(𝑁2 − 𝐼2𝑡 − 𝑅2𝑡)[𝛽0 22𝑡𝐼2𝑡 + (𝛽1 21𝑡 + 𝛽2 12𝑡)𝐼1𝑡] − 𝛾2𝐼2𝑡} 

        +λ1𝑡
𝑅 𝛾1𝐼1𝑡 + λ2𝑡

𝑅 𝛾2𝐼2𝑡. 

(7) 

 

3. Characterizing the Externalities 

3.1 Optimality Conditions 

For type S, the optimality conditions are: 

 
𝜕𝐻

𝜕𝑥𝑖𝑖𝑡
𝑆 = 𝑒−𝜌𝑡𝜙0(𝑁𝑖 − 𝐼𝑖𝑡 − 𝑅𝑖𝑡) (

𝑁𝑖 − 𝐼𝑖𝑡 − 𝑅𝑖𝑡

𝑋𝑖𝑡
+

𝜎

𝑥𝑖𝑖𝑡
𝑆 ) 𝑋𝑖𝑡(𝑥𝑖𝑖𝑡

𝑆 )
𝜎

 

               +λ𝑖𝑡
𝐼 (𝛽0𝑥𝑖𝑖𝑡

𝐼 𝐼𝑖𝑡 + 𝛽2𝑥𝑗𝑖𝑡
𝐼 𝐼𝑗𝑡)(𝑁𝑖 − 𝐼𝑖𝑡 − 𝑅𝑖𝑡) 

               +λ𝑗𝑡
𝐼 𝛽1𝑥𝑗𝑖𝑡

𝐼 𝐼𝑖𝑡(𝑁𝑗 − 𝐼𝑗𝑡 − 𝑅𝑗𝑡) = 0,    𝑖 = 1, 2, 

(8) 
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𝜕𝐻

𝜕𝑥𝑖𝑗𝑡
𝑆 = 𝑒−𝜌𝑡 [(𝑁𝑖 − 𝐼𝑖𝑡 − 𝑅𝑖𝑡)𝜃 (𝜙2

𝑁𝑖 − 𝐼𝑖𝑡 − 𝑅𝑖𝑡

𝑋𝑗𝑡
+ 𝜙0

𝜎

𝑥𝑖𝑗𝑡
𝑆 ) 𝑋𝑗𝑡(𝑥𝑖𝑗𝑡

𝑆 )
𝜎

+ 𝜙2(𝑁𝑗 − 𝐼𝑗𝑡 − 𝑅𝑗𝑡)(𝑁𝑖 − 𝐼𝑖𝑡 − 𝑅𝑖𝑡)(𝑥𝑗𝑗𝑡
𝑆 )

𝜎
] 

               +λ𝑖𝑡
𝐼 𝛽1𝑥𝑗𝑗𝑡

𝐼 𝐼𝑗𝑡(𝑁𝑖 − 𝐼𝑖𝑡 − 𝑅𝑖𝑡) + λ𝑗𝑡
𝐼 𝛽2𝑥𝑗𝑗𝑡

𝐼 𝐼𝑖𝑡(𝑁𝑗 − 𝐼𝑗𝑡 − 𝑅𝑗𝑡) = 0, 

    𝑖 = 1, 2,    𝑖 ≠ 𝑗. 

Also, the ones for the co-state variables are, 

 
𝑑λ𝑖𝑡

𝐼

𝑑𝑡
= −

𝜕𝐻

𝜕𝐼𝑖𝑡
 

         = −λ𝑖𝑡
𝐼 [𝛽0𝑥𝑖𝑖𝑡

𝑆 𝑥𝑖𝑖𝑡
𝐼 (𝑁𝑖 − 2𝐼𝑖𝑡 − 𝑅𝑖𝑡) − (𝛽1𝑥𝑖𝑗𝑡

𝑆 𝑥𝑗𝑗𝑡
𝐼 + 𝛽2𝑥𝑖𝑖𝑡

𝑆 𝑥𝑗𝑖𝑡
𝐼 )𝐼𝑗𝑡 − 𝛾𝑖] 

             −λ𝑗𝑡
𝐼 (𝛽1𝑥𝑗𝑖𝑡

𝑆 𝑥𝑖𝑖𝑡
𝐼 + 𝛽2𝑥𝑗𝑗𝑡

𝑆 𝑥𝑖𝑗𝑡
𝐼 )(𝑁𝑗 − 𝐼𝑗𝑡 − 𝑅𝑗𝑡) + λ𝑖𝑡

𝑅 𝛾𝑖 + 𝑒−𝜌𝑡𝑐, 

𝑑λ𝑖𝑡
𝑅

𝑑𝑡
= −

𝜕𝐻

𝜕𝑅𝑖𝑡
= 0. 

(9) 

Transversality conditions are: 

 λ𝑖𝑇
𝐼 =

𝜕Φ(𝐼1𝑇, 𝐼2𝑇)

𝜕𝐼𝑖𝑇
,    λ𝑖𝑇

𝑅 = 0, 

𝑑λ𝑖𝑡
𝑅

𝑑𝑡
= −

𝜕𝐻

𝜕𝑅𝑖𝑡
= 0. 

(10) 

Note that, the externality of infectious disease is dynamic, represented by λ𝑖𝑡
𝐼  and 

they changes while the production/consumption externalities are essentially static and 

affect the economy through equations (3).  
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Uniform Control 

In the simple case where the authority can only control the activities of the residents 

irrespective of their types, (2) is summarized by, 

 𝛽0𝑖𝑖𝑡 = 𝛽0(𝑥𝑖𝑖𝑡)2,    𝛽1𝑖𝑗𝑡 = 𝛽1𝑥𝑖𝑗𝑡𝑥𝑗𝑗𝑡,    𝛽2𝑗𝑖𝑡 = 𝛽2𝑥𝑖𝑖𝑡𝑥𝑗𝑖𝑡 (2’) 

And (4) is rewritten as, 

 𝑋𝑖𝑡 = 𝜙𝑐 + 𝜙0𝑁𝑖𝑥𝑖𝑖𝑡 + 𝜙2𝑁𝑗𝑥𝑗𝑖𝑡 (4’) 

 The maximand is, 

 𝑉 = ∫ 𝑒−𝜌𝑡
𝑇

0

{𝑁1[𝑋1𝑡(𝑥11𝑡)𝜎 + 𝜃𝑋2𝑡(𝑥12𝑡)𝜎] − 𝑐𝐼1𝑡

+ 𝑁2[𝑋2𝑡(𝑥22𝑡)𝜎 + 𝜃𝑋1𝑡(𝑥21𝑡)𝜎] − 𝑐𝐼2𝑡}𝑑𝑡 − Φ(𝐼1𝑇, 𝐼2𝑇) 

(6’) 

(7)  is rewritten to be: 

 𝐻 = 𝑒−𝜌𝑡{𝑁1[𝑋1𝑡(𝑥11𝑡)𝜎 + 𝜃𝑋2𝑡(𝑥12𝑡)𝜎] − 𝑐𝐼1𝑡

+ 𝑁2[𝑋2𝑡(𝑥22𝑡)𝜎 + 𝜃𝑋1𝑡(𝑥21𝑡)𝜎] − 𝑐𝐼2𝑡} 

        +λ1𝑡
𝐼 {[𝛽0(𝑥11𝑡)2𝐼1𝑡 + (𝛽1𝑥12𝑡𝑥22𝑡 + 𝛽2𝑥11𝑡𝑥21𝑡)𝐼2𝑡](𝑁1 − 𝐼1𝑡 − 𝑅1𝑡)

− 𝛾1𝐼1𝑡} 

        +λ2𝑡
𝐼 {[𝛽0(𝑥22𝑡)2𝐼2𝑡 + (𝛽1𝑥21𝑡𝑥11𝑡 + 𝛽2𝑥22𝑡𝑥12𝑡)𝐼1𝑡](𝑁2 − 𝐼2𝑡 − 𝑅2𝑡)

− 𝛾2𝐼2𝑡} 

        +λ1𝑡
𝑅 𝛾1𝐼1𝑡 + λ2𝑡

𝑅 𝛾2𝐼2𝑡 

(7’) 

The optimality conditions are: 
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𝜕𝐻

𝜕𝑥𝑖𝑖𝑡
= 𝑒−𝜌𝑡𝑁𝑖 (

𝜙0𝑁𝑖

𝑋𝑖𝑡
+

𝜎

𝑥𝑖𝑖𝑡
) 𝑋𝑖𝑡(𝑥𝑖𝑖𝑡)𝜎

+ λ𝑖𝑡
𝐼 (2𝛽0𝑥𝑖𝑖𝑡𝐼𝑖𝑡 + 𝛽2𝑥𝑗𝑖𝑡𝐼𝑗𝑡)(𝑁𝑖 − 𝐼𝑖𝑡 − 𝑅𝑖𝑡) 

               +λ𝑗𝑡
𝐼 𝛽1𝑥𝑗𝑖𝑡𝐼𝑖𝑡(𝑁𝑗 − 𝐼𝑗𝑡 − 𝑅𝑗𝑡) = 0,    𝑖 = 1, 2, 

𝜕𝐻

𝜕𝑥𝑖𝑗𝑡
= 𝑒−𝜌𝑡 [𝑁𝑖𝜃 (

𝜙2𝑁𝑖

𝑋𝑗𝑡
+

𝜎

𝑥𝑖𝑗𝑡
) 𝑋𝑗𝑡(𝑥𝑖𝑗𝑡)

𝜎
+ 𝜙𝑁𝑗𝑁𝑖(𝑥𝑗𝑗𝑡)

𝜎
] 

               +λ𝑖𝑡
𝐼 𝛽1𝑥𝑗𝑗𝑡𝐼𝑗𝑡(𝑁𝑖 − 𝐼𝑖𝑡 − 𝑅𝑖𝑡) + λ𝑗𝑡

𝐼 𝛽2𝑥𝑗𝑗𝑡𝐼𝑖𝑡(𝑁𝑗 − 𝐼𝑗𝑡 − 𝑅𝑗𝑡) = 0, 

    𝑖 = 1, 2,    𝑖 ≠ 𝑗. 

(8’) 

Also, for the co-state variables, 

 
𝑑λ𝑖𝑡

𝐼

𝑑𝑡
= −

𝜕𝐻

𝜕𝐼𝑖𝑡
 

         = −λ𝑖𝑡
𝐼 [𝛽0(𝑥𝑖𝑖𝑡)2(𝑁𝑖 − 2𝐼𝑖𝑡 − 𝑅𝑖𝑡) − (𝛽1𝑥𝑖𝑗𝑡𝑥𝑗𝑗𝑡 + 𝛽2𝑥𝑖𝑖𝑡𝑥𝑗𝑖𝑡)𝐼𝑗𝑡 − 𝛾𝑖] 

             −λ𝑗𝑡
𝐼 (𝛽1𝑥𝑗𝑖𝑡𝑥𝑖𝑖𝑡 + 𝛽2𝑥𝑗𝑗𝑡𝑥𝑖𝑗𝑡)(𝑁𝑗 − 𝐼𝑗𝑡 − 𝑅𝑗𝑡) + λ𝑖𝑡

𝑅 𝛾𝑖 + 𝑒−𝜌𝑡𝑐, 

𝑑λ𝑖𝑡
𝑅

𝑑𝑡
= −

𝜕𝐻

𝜕𝑅𝑖𝑡
= 0. 

(9’) 

 

3.2 Comparing to the Static Cases 

Now, consider static and/or decentralized cases to compare to the conditions derived 

in the previous subsection. First, characterize the nature of externality using a static 

model. Suppose, for a susceptible, the probability getting infected depends simply on 

his/her behavior: 

 �̃�𝑖
𝑆 = 𝜂0𝑥𝑖𝑖

𝑆 + 𝜂1𝑥𝑖𝑗
𝑆 + 𝜂2𝑥𝑖𝑖

𝑆 , (11) 
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A self-interested resident maximizes the expected utility: 

 𝐸𝑈𝑖
𝑆 = (1 − �̃�𝑖

𝑆)[�̅�𝑖(𝑥𝑖𝑖
𝑆)

𝜎
+ 𝜃�̅�𝑗(𝑥𝑖𝑗

𝑆 )
𝜎

] + �̃�𝑖
𝑆[�̅�𝑖(𝑥𝑖𝑖

𝑆)
𝜎

+ 𝜃�̅�𝑗(𝑥𝑖𝑗
𝑆 )

𝜎
− 𝐶] (12) 

The first-order conditions are: 

 
𝜕𝐸𝑈𝑖

𝑆

𝜕𝑥𝑖𝑖
𝑆 =

𝜎

𝑥𝑖𝑖
𝑆 �̅�𝑖(𝑥𝑖𝑖

𝑆)
𝜎

− (𝜂0 + 𝜂2)𝐶 = 0, 

𝜕𝐸𝑈𝑖
𝑆

𝜕𝑥𝑖𝑗
𝑆 =

𝜎

𝑥𝑖𝑗
𝑆 �̅�𝑗(𝑥𝑖𝑗

𝑆 )
𝜎

− 𝜂1𝐶 = 0,    𝑖 = 1, 2,    𝑖 ≠ 𝑗. 

(13) 

Next, consider the command-optimum of a static model of this type. Suppose the 

“actual” rate of infection, which takes into account the secondary or later infections, is 

represented by 𝜂s instead of 𝜂s: 

 𝐼𝑖
𝑆 = 𝑃𝑖

𝑆𝑆𝑖 = (𝜂0𝑥𝑖𝑖
𝑆 + 𝜂1𝑥𝑖𝑗

𝑆 + 𝜂2𝑥𝑖𝑖
𝑆)𝑆𝑖 , (14) 

The plannner’s maximand is, 

 𝐸𝑉𝑖
𝑆 = (𝑆𝑖 − 𝐼𝑖

𝑆)[𝑋𝑖(𝑥𝑖𝑖
𝑆)

𝜎
+ 𝜃𝑋𝑗(𝑥𝑖𝑗

𝑆 )
𝜎

] + 𝐼𝑖
𝑆[𝑋𝑖(𝑥𝑖𝑖

𝑆)
𝜎

+ 𝜃𝑋𝑗(𝑥𝑖𝑗
𝑆 )

𝜎
− 𝐶] (15) 

The optimal conditions are: 

 
𝜕𝐸𝑉𝑖

𝑆

𝜕𝑥𝑖𝑖
𝑆 = 𝑆𝑖 (

𝑆𝑖

𝑋𝑖
+

𝜎

𝑥𝑖𝑖
𝑆) 𝑋𝑖(𝑥𝑖𝑖

𝑆)
𝜎

− 𝑆𝑖(𝜂0 + 𝜂2)𝐶 = 0, 

𝜕𝐸𝑉𝑖
𝑆

𝜕𝑥𝑖𝑗
𝑆 = 𝑆𝑖𝜃 (

𝜙𝑆𝑖

𝑋𝑗
+

𝜎

𝑥𝑖𝑗
𝑆 ) 𝑋𝑗(𝑥𝑖𝑗

𝑆 )
𝜎

+ 𝜙𝑆𝑗𝑆𝑖(𝑥𝑗𝑗
𝑆 )

𝜎
− 𝑆𝑖𝜂1𝐶 = 0, 

    𝑖 = 1, 2,    𝑖 ≠ 𝑗. 

(16) 

The first term in the parentheses in each equation of (16) corresponds to 

agglomeration economies and, without taking account such as in (13), activity levels tend 

to be lower. The second term in the second equation as well as the last term in each 
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equation, which is higher than that of (13) in per-capita terms, illustrate the 

externalities caused by the infectious disease. Without considering them, activities tend 

to exceed the optimal levels. 

 

3.3 Comparing to the Dynamic Decentralized Case 

Moreover, consider the case in which the model is dynamic but decentralized. Suppose 

that a resident decides the level of consumption irrespective of the externality he/she 

causes. That is, he/she takes 𝑋s, 𝐼s and 𝑆s as given. Once infected in period 𝑡 =  𝜏, the 

probability of getting recovered is 𝛾𝑖 in every period. Therefore, the expected loss is: 

 �̃�𝑖𝜏 = ∫ 𝑒−𝜌(𝑡−𝜏)𝑒−𝛾𝑖(𝑡−𝜏)
𝑇

𝜏

𝑐𝑑𝑡 =
𝑐

𝛾𝑖 + 𝜌
(1 − 𝑒−(𝛾𝑖+𝜌)(𝑇−𝜏)) (17) 

Then, in each period 𝜏, each self-interested resident maximizes: 

 �̃�𝑖𝜏
𝑍 = ∫ 𝑒−𝜌(𝑡−𝜏)

𝑇

𝜏

[�̅�𝑖𝑡(𝑥𝑖𝑖𝑡
𝑍 )

𝜎
+ 𝜃�̅�𝑗𝑡(𝑥𝑖𝑗𝑡

𝑍 )
𝜎

]𝑑𝑡 

          −(𝛽0𝑆�̅�𝑡𝐼�̅�𝑡𝑥𝑖𝑖𝑡
𝑆 𝑥𝑖𝑖𝑡

𝐼 + 𝛽1𝑆�̅�𝑡𝐼�̅�𝑡𝑥𝑖𝑗𝑡
𝑆 𝑥𝑗𝑗𝑡

𝐼 + 𝛽2𝑆�̅�𝑡𝐼�̅�𝑡𝑥𝑖𝑖𝑡
𝑆 𝑥𝑗𝑖𝑡

𝐼 ) 

𝑐

𝛾𝑖 + 𝜌
(1 − 𝑒−(𝛾𝑖+𝜌)(𝑇−𝜏)) 

(18) 

In the case of an uninfected resident (i.e., 𝑍 = 𝑆,) evaluating at 𝜏 and differentiating 

with respect to 𝑥s,  

 
𝜕�̃�𝑖𝑡

𝑆

𝜕𝑥𝑖𝑖𝑡
𝑆 = 𝑒−𝜌𝑡

𝜎

𝑥𝑖𝑖𝑡
𝑆 �̅�𝑖𝑡(𝑥𝑖𝑖𝑡

𝑆 )
𝜎

− (𝛽0𝑆�̅�𝑡𝐼�̅�𝑡𝑥𝑖𝑖𝑡
𝐼 + 𝛽2𝑆�̅�𝑡𝐼�̅�𝑡𝑥𝑗𝑖𝑡

𝐼 ) 

𝑐

𝛾𝑖 + 𝜌
𝑒−𝜌𝑡(1 − 𝑒−(𝛾𝑖+𝜌)(𝑇−𝜏)) = 0,    𝑖 = 1, 2,    𝑖 ≠ 𝑗. 

(19) 
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𝜕�̃�𝑖𝑡
𝑆

𝜕𝑥𝑖𝑗𝑡
𝑆 = 𝑒−𝜌𝑡

𝜎

𝑥𝑖𝑗𝑡
𝑆 �̅�𝑗𝑡(𝑥𝑖𝑗𝑡

𝑆 )
𝜎

− 𝛽1𝑆�̅�𝑡𝐼�̅�𝑡𝑥𝑗𝑗𝑡
𝐼  

𝑐

𝛾𝑖 + 𝜌
𝑒−𝜌𝑡(1 − 𝑒−(𝛾𝑖+𝜌)(𝑇−𝜏)) = 0,    𝑖 = 1, 2,    𝑖 ≠ 𝑗. 

Comparing (19) to (8), one may find the differences that correspond to the ones found 

in the previous subsection. Also, one can easily show that the last term in each equation 

in (19) essentially correspond to 𝜆 s in (8). In words, the market (self-interested) 

allocation tends to underestimate the role of activities when the agglomeration 

economies matter but overestimate them when secondary and inter-regional infections 

may occur. To correct for those externalities, the corresponding rate of charges or 

physical restrictions such as lock-down are necessary. 

 

3.4 Externalities at Steady State: Simplest Case 

In addition, this subsection illustrates the steady state with a simple numerical 

example. Consider, first, the following simplest SIS (discrete) setting in which 𝛽1 = 𝛽2 =

0:  

 �̇�𝑖𝑡 = −𝛽0𝑖𝑖𝑡𝐼𝑖𝑡𝑆𝑖𝑡 − 𝛾𝑖𝐼𝑖𝑡 

𝐼�̇�𝑡 = 𝛽0𝑖𝑖𝑡𝐼𝑖𝑡𝑆𝑖𝑡 − 𝛾𝑖𝐼𝑖𝑡 , 

(20) 
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Figure 1 depicts the changes in 𝑆  and 𝐼   when 𝛽0 = 0.3, 𝑥𝑖𝑖𝑡
𝑆 = 𝑥𝑖𝑖𝑡

𝐼 = 1 (without 

control,) and 𝛾𝑖 = 0.2 in each region. By (20), the (non-zero) steady state in which 𝐼�̇�𝑡 =

0 is characterized by the following equation: 

 𝑆𝑖𝑡 =
𝛾𝑖

𝛽0𝑖𝑖𝑡
, (21) 

which equals  2/3 in the case of Figure 1. When the number of newly infected equals 

the recovered, the steady state is achieved. When 𝛽0𝑖𝑖𝑡 can be controlled, for example, in 

the case of the “Uniform Control” in subsection 3.1, 

 𝐼𝑖𝑡 = 𝑁𝑖 −
𝛾𝑖

𝛽0(𝑥𝑖𝑖
∗ )2

. (22) 

 

 

Figure 1: Simple SIS model without Control 

Thus, around the vicinity of the steady state, 

 
Δ𝐼𝑖𝑡

Δ𝑥𝑖𝑖
≅

2𝛾𝑖

𝛽0(𝑥𝑖𝑖
∗ )3

Δ𝑥𝑖𝑖 . (23) 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 4 8

1
2

1
6

2
0

2
4

2
8

3
2

3
6

4
0

4
4

4
8

5
2

5
6

6
0

6
4

6
8

7
2

7
6

8
0

8
4

8
8

9
2

9
6

1
0
0

I S



12 

 

which corresponds to 𝜂0  in the static case of subsection 3.2 and considerably large. 

Inverse of (22) is, 

 𝑥𝑖𝑖
∗ = (

𝛾𝑖

𝛽0

1

𝑁𝑖 − 𝐼𝑖𝑡
)

1
2

, (24) 

which correspond to 𝐼̇ = 0 curve in the phase diagram of Figure (2). In addition, in this 

particular case, for 𝑇 → ∞, (9) reduces to,  

 
𝑑λ𝑖𝑡

𝐼

𝑑𝑡
= −

𝜕𝐻

𝜕𝐼𝑖𝑡
= −λ𝑖𝑡

𝐼 [𝛽0(𝑥𝑖𝑖𝑡)2(𝑁𝑖 − 2𝐼𝑖𝑡) − 𝛾𝑖] + 𝑒−𝜌𝑡𝑐 (25) 

Replacing λ𝑖𝑡
𝐼  with λ𝑖𝑡

𝐼 = 𝑒−𝜌𝑡μ𝑖𝑡
𝐼 , 

 
𝑑μ𝑖𝑡

𝐼

𝑑𝑡
= −μ𝑖𝑡

𝐼 [𝛽0(𝑥𝑖𝑖𝑡)2(𝑁𝑖 − 2𝐼𝑖𝑡 − 𝑅𝑖𝑡) − 𝛾𝑖 − 𝜌] + 𝑐 (26) 

The curve for �̇� = 0 is drawn such as in Figure 2. 

 

 

Figure 2: An Example of the Phase Diagram around the Steady State 

𝐼 

𝑥 

(
𝛾

𝛽0
)

1
2
 

𝐼̇ = 0 

�̇� = 0 

(
𝛾 + 𝜌

𝑁𝛽0
)

1
2
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Figure 3: No control, market and optimal paths 

 

Illustrate the change in the steady state when the economy is already in the situation 

characterized by (21) or in Figure 1. Consider, for simplicity, the cases in which 𝑇 → ∞, 

Φ(𝐼1𝑇, 𝐼2𝑇) → ∞, and 𝜙0 = 𝜙2 = 0. In the decentralized economy without travels (𝜃 = 𝛽1 =

𝛽2 = 0,) the infected residents do not impose restrictions on themselves (𝑥𝑖𝑖𝑡
𝐼 =1) and the 

condition in (19) reduces to: 

 𝜎𝜙0(𝑥𝑖𝑖𝑡
𝑆 )

𝜎−1
− 𝛽0𝑆𝑖𝑡𝐼𝑖𝑡𝑥𝑖𝑖𝑡

𝐼
𝑐

𝛾𝑖 + 𝜌
= 0. (19’) 

Also, the optimal control at steady state maximizes the following with respect to (22): 

 𝑉𝑖 = ∫ 𝑒−𝜌𝑡
∞

0

{𝜙0𝑁𝑖(𝑥𝑖𝑖
∗ )𝜎 − 𝑐 (𝑁𝑖 −

𝛾𝑖

𝛽0(𝑥𝑖𝑖
∗ )2

)} 𝑑𝑡 

    =
1

𝜌
{𝜙0𝑁𝑖(𝑥𝑖𝑖

∗ )𝜎 − 𝑐 (𝑁𝑖 −
𝛾𝑖

𝛽0(𝑥𝑖𝑖
∗ )2

)}. 

(6”) 
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The curves in Figure 3 indicate the paths without control, decentralized control by 

(19’) and optimal control by (6”), respectively, for 𝜎 = 0.5, 𝜙0 = 1,  𝑐 = 1.5, 𝑁𝑖 = 7, and 

𝜌 → 0.  

 

 

Figure 4: With Travels (no control and controlled paths) 

 

With travels, taking into account the symmetry, the steady state (21) changes to: 

 𝑆𝑖𝑡 =
𝛾𝑖

𝛽0(𝑥𝑖𝑖𝑡)2 + 𝛽1𝑥𝑖𝑗𝑡𝑥𝑗𝑗𝑡 + 𝛽2𝑥𝑖𝑖𝑡𝑥𝑗𝑖𝑡
, (27) 

The planner need to control both 𝑥𝑖𝑖s and 𝑥𝑖𝑗s so that to obtain an explicit solution 

for the condition (6’) is somewhat difficult. Thus, this subsection considers the case in 

which only 𝑥𝑖𝑗s, the travels, are controlled. Then, (6’) is rewritten as: 

 𝑉 = ∫ 𝑒−𝜌𝑡
∞

0

{𝜙0𝑁1[1 + 𝜃(𝑥12
∗ )𝜎] − 𝑐𝐼1

∗ + 𝜙0𝑁2[1 + 𝜃(𝑥21
∗ )𝜎] − 𝑐𝐼2

∗}𝑑𝑡 (28) 
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    =
1

𝜌
{𝜙0𝑁1[1 + 𝜃(𝑥12

∗ )𝜎] − 𝑐𝐼1
∗ + 𝜙0𝑁2[1 + 𝜃(𝑥21

∗ )𝜎] − 𝑐𝐼2
∗} 

Moreover, the decentralized behavior is characterized by (19). Figure 4 presents the 

difference between the path controlled by (28) and the one without a control (the 

decentralized -path coincides with the latter as 𝑥𝑖𝑗 = 1 is the solution for the above 

parameter values.  

 

3.5 Externalities at a Particular Point: SIR Case 

When SIR is assumed, for 𝛽0𝑖𝑖𝑡 = 0.3 and 𝛾𝑖 = 0.2, the changes in 𝑆, 𝐼 and 𝑅 are 

depicted such as the light-colored curves in Figure 5. Note that there is no longer a steady 

state because recovered people are not to be infected again. Instead, there is a local 

maximum of 𝐼. Again, (22) and (23) hold around the vicinity of the corresponding point. 

Deriving the optimal paths is extremely difficult because no “steady state” in this case 

and the optimality conditions in (8’)-(9’) must be fully used. 

Because 𝐼�̇�𝑡 = 0 when 𝐼𝑖𝑡  hits its maximum, this subsection considers the second-

best rule in which (27)-(28) are still applied for control. Then if the control starts when 

𝐼1𝑡 hits its maximum, the paths change to the darker ones in Figure5. Also, if the same 

rule is applied form the beginning, the situation in Figure 6 is to occur and almost no 

infection is to be seen in the second region. 
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Figure 5: SIR Case 

 

  

Figure 6: SIR Case (applied from the beginning) 
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4. Conclusion 

This paper has modelled the optimal and market level of consumption in an economy 

with two regions when infectious disease may spread. Typical SIS and SIR dynamic 

model is extended to characterize the two-region economy. The corresponding dynamic 

optimal control problem has been set up and the Hamiltonian is presented. Self-

interested behavior ignores agglomeration economy as well as the negative externality 

of the disease such as the secondary and later infections and results in under- or over-

consumption (activity) levels. In general, corresponding corrections such as charges or 

regulations are required. Some simple examples are presented to illustrate the steady 

state and local extremum of SIS and SIR models, respectively. 

The possible extensions of this paper includes 1) a detailed simulation with optimal 

control of 𝑥s, specifying the paths of 𝜆s and using realistic estimates of the parameters, 

2) considering a case in which the interaction between two regions appears in more 

prominent way (e.g., two peaks,) and 3) identifying the optimal levels of regulations. 
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