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Yonemoto (2013) has characterized the behavior of an individual whose 

instantaneous utility is a function of the change in his/her consumption, as well as the 

absolute level. This study extends its model, generalizing the objective function and 

considering several specific applications including utility as a function of the second-

order change, the rate of the (first-order) change and the level of the remaining asset. 

Further, for several given consumption paths, the corresponding lifetime utility 

levels are compared. Their order differs depending on the functional form. 
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1. Introduction 

Most macroeconomic models, such as the Discounted Utility Model, assume 

that utility of a household or an individual is a function of consumption in each 

period.1 However, “Easterlin Paradox,” originally studied by Easterlin (1974, updated 

in 1995) and followed by many others, points out that the level of “happiness” of an 

individual does not seem to be determined solely by the absolute level of income or 

consumption.2  

One way to interpret the paradox is the “Relative Income Hypothesis,” 

introduced by Duesenberry (1949) and focused on the role of comparison with others 

or one’s own state in the past in determining the level of happiness.  

Models of habit formation have been also developed in a similar line of thought. 

Among them are Pollak (1970), which is one of the earliest studies, Gilboa (1989), 

which takes into account utility variation between two consecutive periods and 

Loewenstein and Prelec (1993), which considers global properties of a sequence.  

As for macroeconomic analyses, Bordley (1986) and Frank (1989) formulate 

continuous-time models. Carroll et al. (1997) and Carroll et al. (2000) explicitly 

model the speed of adaptation. Wakai (2008) and Wakai (2013) present models that 

                                                 
1 Among the earliest Discounted Utility Models is the one introduced by Samuelson (1937). 
2 Recent developments in this field are summarized by Clark et al. (2008). 
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characterize “utility smoothing” based on the experimental study of Loewenstein 

(1987). 

Noting those studies, Yonemoto (2013) has investigated the behavior and 

welfare of an individual whose instantaneous utility is a function of the change in 

his/her consumption, as well as the absolute level. It has shown that, an individual 

tends to seek an upward-sloping consumption path but if there are initial and terminal 

conditions, the overall shape of the path depends highly on them. 

This study extends Yonemoto (2013) and considers more general formulation. 

Moreover, several specific cases are explored using simple models. 

In the next section, the level of lifetime satisfaction of an individual is expressed 

by a generalized function of sequences of consumption and asset. The corresponding 

optimal conditions are derived.  

In Section 3, a simplified model, which is based on that of Yonemoto (2013), is 

presented and the case in which the second-order difference matters is investigated. 

Section 4 and 5 explore the cases in which the rate of (first-order) change and 

the level of the remaining asset are taken into account, respectively.  

Section 6 compares the levels of lifetime satisfaction that correspond to several 

typical (given) consumption paths. Some examples of the reversal in their order, 

depending on the functional form, are presented. 
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2. Maximization Problem 

First, consider the general case in which the instantaneous utility of an 

individual is a function of the first and higher-order derivatives of his/her 

consumption and asset with respect to time t as well as their absolute levels. Denote 

the level of his/her consumption at time t by ( )0
tc  and its n-th order derivative by ( )n

tc . 

Similarly, denote the level of his/her asset by ( )0
ta  and its m-th order derivative by 

( )m
ta . Assume that an individual lives for Tt ≤≤0  and asset function Φ  evaluates 

( )0
Ta , the level of asset remaining at T. Then, the intertemporal utility (lifetime 

satisfaction) maximization problem with any constraint ( )⋅g  is formulated as 

follows:3 

( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )0

0

1010 ,,,,,,,,max T

T M
ttt

N
ttt adtaaaccctu

N
Φ+∫ 

c
 

subject to: 

( )
( )n
t

n
t c
dt

dc
=

−1

    for    Nn ,,1= ,  

( )
( )m
t

m
t a
dt

da
=

−1

    for    Mm ,,1= ,    and 

( ) ( ) ( ) ( ) ( ) ( )( ) 0,,,,,,,, 1010 =M
ttt

N
ttt aaaccctg  . 

( ) ( )nn cc 00 =     and    ( ) ( )n
T

n
T cc =     for    1,,0 −= Nn      and 

( ) ( )mm aa 00 =     for    Mm ,,0 = . (1) 

                                                 
3 Any realistic setting may have non-negative constraint on c: ( ) 00 ≥tc . 
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Associated optimal conditions are summarized in the Appendix. However, the 

solutions of this type of problem can be discontinuous (e.g. bang-bang) and not 

always characterized adequately by the continuous model. Thus, consider also the 

following discrete version: 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )0

1

1010 ,,,,,,,, T

T

t

M
ttt

N
ttt aaaaccctu Φ+∑

=

  

subject to 

( ) ( ) ( ) ( ) ( ) ( )( ) 0,,,,,,,, 1010 =M
ttt

N
ttt aaaccctg      for    Tt ,,1= , 

( ) ( ) ( ) ( )1
0

1
0

0
0

0
0 ,, −− == NN cccc  , 

( ) ( )00
TT cc = , 

( ) ( ) ( ) ( )1
0

1
0

0
0

0
0 ,, −− == MM aaaa  , 

where 

( ) ( ) ( )1
1

1 −
−

− −≡ n
t

n
t

n
t ccc     for    Tt ,,1=     and    Nn ,,1= , 

( ) ( ) ( )1
1

1 −
−

− −≡ m
t

m
t

m
t aaa     for    Tt ,,1=     and    Mm ,,1= .  (2) 

Note that there are several ways to approximate the derivatives by discrete 

variables. 4 (2) simply uses the difference of the current value (of the lower-order 

variable) from the previous one. 5 

                                                 
4  Other definitions may include the difference between the next and current values (e.g. 
( ) ( ) ( )11

1
−−

+ −≡ n
t

n
t

n
t ccc ,) or more generally, any weighted average of the differences around t (e.g. 
( ) ( ) ( )( ) ( ) ( ) ( )( )11

1
1

1
1 1 −−

+
−

−
− −−+−≡ n

t
n

t
n

t
n

t
n

t ccccc αα .)  
5 This simple approximation may cause some deviations from the continuous case. However, it is 

consistent with the settings of habit formation models. In those models, the utility depends on the 
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The Lagrangian for the constrained maximization problem (2) is: 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )0

1

1010 ,,,,,,,, T

T

t

M
ttt

N
ttt aaaaccctuL Φ+= ∑

=

  

( ) ( ) ( )( ) ( ){ }∑∑
= =

−
−

− −−+
T

t

N

n

n
t

n
t

n
t

nc
t ccc

1 1

1
1

1λ ( ) ( ) ( )( ) ( ){ }∑∑
= =

−
−

− −−+
T

t

M

m

m
t

m
t

m
t

ma
t aaa

1 1

1
1

1λ  

( ) ( ) ( ) ( ) ( ) ( )( )∑
=

+
T

t

M
ttt

N
tttt aaaccctg

1

1010 ,,,,,,,, µ  (3) 

Differentiating (3) with respect to the control variables, first-order conditions 

are obtained as follows: 

For 1,,1 −= Tt  , 

i-1)     ( ) ( )
( ) ( )

( ) 00
1
1

1
00 =

∂
∂

+−+
∂
∂

=
∂
∂ ∗

∗
+

∗
∗∗

t
t

c
t

c
t

tt c
g

c
u

c
L µλλ , (4) 

( ) ( )
( ) ( ) ( )

( ) 01
1

1 =
∂
∂

+−+−
∂
∂

=
∂
∂ ∗

∗+
+

∗+∗
∗∗

n
t

t
nc

t
nc

t
nc

tn
t

n
t c

g
c
u

c
L µλλλ

 
(5) 

           for    1,,1 −= Nn  , 

         ( ) ( )
( )

( ) 0=
∂
∂

+−
∂
∂

=
∂
∂ ∗

∗
∗∗

N
t

t
Nc

tN
t

N
t c

g
c
u

c
L µλ , (6) 

i-2)     ( ) ( )
( ) ( )

( ) 01 =
∂
∂

++−
∂
∂

=
∂
∂ ∗

∗+∗
∗∗

n
T

T
nc

T
nc

Tn
T

n
T c

g
c
u

c
L µλλ , (7) 

for    1,,1 −= Nn  , 

( ) ( )
( )

( ) 0=
∂
∂

+−
∂
∂

=
∂
∂ ∗

∗
∗∗

N
T

T
Nc

TN
T

N
T c

g
c
u

c
L µλ , (8) 

For 1,,1 −= Tt  , 

                                                                                                                                            
difference of the level of the consumption from “reference point.” If the point is updated every period, 

the setting coincides with that of (2) at first-order level. 
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ii-1) ( ) ( )
( ) ( )

( ) 00
1
1

1
00 =

∂
∂

+−+
∂
∂

=
∂
∂ ∗

∗
+

∗
∗∗

t
t

a
t

a
t

tt a
g

a
u

a
L µλλ , (9) 

        ( ) ( )
( ) ( ) ( )

( ) 01
1

1 =
∂
∂

+−+−
∂
∂

=
∂
∂ ∗

∗+
+

∗+∗
∗∗

m
t

t
ma

t
ma

t
ma

tm
t

m
t a

g
a
u

a
L µλλλ , (10) 

for    1,,1 −= Mm  , 

( ) ( )
( )

( ) 0=
∂
∂

+−
∂
∂

=
∂
∂ ∗

∗
∗∗

M
t

t
Ma

tM
t

M
t a

g
a
u

a
L µλ , (11) 

ii-2) ( ) ( ) ( )
( )

( ) 00
1

000 =
∂
∂

++
∂
Φ∂

+
∂
∂

=
∂
∂ ∗

∗
∗∗∗

T
T

a
T

TTT a
g

aa
u

a
L µλ , (12) 

( ) ( )
( ) ( )

( ) 01 =
∂
∂

++−
∂
∂

=
∂
∂ ∗

∗+∗
∗∗

m
T

T
ma

T
ma

Tm
T

m
T a

g
a
u

a
L µλλ     for    1,,1 −= Mm  , (13) 

( ) ( )
( )

( ) 0=
∂
∂

+−
∂
∂

=
∂
∂ ∗

∗
∗∗

M
T

T
Ma

TM
T

M
T a

g
a
u

a
L µλ , (14) 

Consider the following type of constraint, which is consistent with the 

specification in and after section 3: 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )1001010 ,,,,,,,,,, ttt
M

ttt
N

ttt aacgaaaccctg =  (15) 

Also, assume that each partial derivative is constant: 

( ) 00 c
t

g
c
g

=
∂
∂

,    ( ) 00 a
t

g
a
g

=
∂
∂

,    ( ) 11 a
t

g
a
g

=
∂
∂

. (16) 

Then, by i-1) and ii-1), the following relationship is derived: 

( ) ( ){ }







−+

∂
∂+ ∑∑

= =

∗ N

w z

wz
tc

Q

tc

aa
w

wz u
c
u

g
gg

1

2

1
,0

0

10 1 ( ) ( ){ }







−+

∂
∂

− ∑∑
= =

+
+

∗ N

w z

wz
tc

Q

tc

a
w

wz u
c
u

g
g

1

2

1
1,0

10

1 1  

( ) ( ){ }







−+

∂
∂

− ∑∑
= =

∗ M

w z

wz
ta

Q

t

w

wz u
a
u

1

2

1
,0 1  
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0= , (17) 

where 

∑
−

=

=
1

0

w

i

wz
iwz qQ ,

 

( ) ( )








=== ∑
−

=
−− 1,0,2,,,,

1

0
1010 i

w

i

i
iw

wz
w

wz qqzqqqq      and
 

( )w
Qt

wz
tc

wz
c

uu
+∂
∂

=, .

 

(17) is a kind of Euler’s equation, which does not always have an explicit 

solution.6 

                                                 
6 For the properties of Euler’s equation with higher-order derivatives, see Chiang (2000). 
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3. Second-Order Difference 

Next, characterize the behavior of an individual who cares about the second-

order difference in consumption, as well as the first-order difference and the absolute 

level, using a simplified model. Suppose that the instantaneous utility of an individual 

is additively separable and expressed by: 

( )( ) ( ) ( )( ) ( ) ( )( ) 210 22
2

11
1

0
0

~~~ βββ
ααα cccccu tttt ++++= . (18) 

where ( )1~c , ( ) 0~ 2 >c .7 

  Then, the intertemporal utility maximization problem is written as: 

( )( ) ( ) ( )( ) ( ) ( )( ){ }∑
=

−












++++








+

T

t
ttt

t

ccccc
1

22
2

11
1

0
0

1
210 ~~

1
1 βββ

ααα
ρ

, (19) 

( ) ( ) ( ) ( )( )00
1

0 1 ttt cara −+= − , 

( ) ( )0
0

0
0 cc = ,    ( ) ( )1

0
1

0 cc = ,    ( ) ( )00
TT cc = ,    ( ) ( )0

0
0

0 aa =     and 

( ) ( ) ( )0
1

01
−−≡ ttt ccc , 

where r and ρ  are the interest rate and discount rate, respectively.  

The structural equations are combined into a single equation by adding up: 

( ) ( ) ( )0

1

0
1

0
0 1

1
1

1
T

TT

t
t

t

a
r

c
r

a 






+

+



















+

= ∑
=

−

.
 

(20) 

The Lagrangian for (19) is, taking into account (20),  

                                                 
7 In the second and third terms, sufficiently large ( )1~c   and ( )2~c  are added, respectively, in order to 

guarantee positive values in the parentheses. 
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( )( ) ( ) ( )( ) ( ) ( )( ){ }∑
=

−












++++








+

=
T

t
ttt

t

cccccL
1

22
2

11
1

0
0

1
210 ~~

1
1 βββ

ααα
ρ

 

( ) ( ) ( )( ) ( ){ } ( ) ( ) ( )( ) ( ){ }∑∑
=

−
=

− −−+−−+
T

t
ttt

c
t

T

t
ttt

c
t cccccc

1

21
1

12

1

10
1

01 λλ  

( ) ( ) ( )




















+

−



















+

−+
−

=

−

∑ 0
1

1

0
1

0
0 1

1
1

1
T

TT

t
t

t

a
r

c
r

aµ . (21) 

Differentiating (21) with respect to the control variables ( ) ( )0
1

0
1 ,, −Tcc  , ( ) ( )11

1 ,, Tcc   

and ( ) ( )22
1 ,, Tcc  , the following first-order conditions are derived: 

( )
( )( ) 10

00

1

0
0

1
1 −

−∗









+

=
∂
∂ β

βα
ρ t

t

t

c
c
L ( ) ( ) 0

1
1 1

1
1

1 =






+

−−+
−

+

t
c
t

c
t r

µλλ  , 

 for    1,,1 −= Tt  , (22)
 

( )
( ) ( )( ) 111

11

1

1
1~

1
1 −

−∗

+







+

=
∂
∂ β

βα
ρ

cc
c
L

t

t

t

( ) ( ) ( ) 02
1

21 =−+− +
c
t

c
t

c
t λλλ .  

 for    1,,1 −= Tt  , (23)
 

( )
( ) ( )( ) 111

11

1

1
1~

1
1 −

−∗

+







+

=
∂
∂ β

βα
ρ

cc
c
L

T

T

T

( ) ( ) 021 =+− c
T

c
T λλ . (24) 

( )
( ) ( )( ) 122

22

1

2
2~

1
1 −

−∗

+







+

=
∂
∂ β

βα
ρ

cc
c
L

t

t

t

( ) 02 =− c
tλ ,    for Tt ,,1= , (25)

 

 

Without Taking into Account the Second-Order Change 

Before proceeding further with the above setting, consider the case in which the 

second-order-difference does not matter ( 02 =α ) and ( ) 02 =c
tλ  by (25). Yonemoto 

(2013) has analyzed the case in detail. Main conclusions are as follows: 
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Figure 3.1 Optimal Paths for 0, 10 >αα , Derived in Yonemoto(2013) 

 

Such as in Figure 3.1, the optimal path is drawn so that it smoothly connects the 

start point with the end point, while keeping some level of consumption as long as 

possible. It is concave when the amount of initial asset is relatively large, convex 

when it is relatively small and has both concave and convex parts when the amount is 

in between them. 

 

Taking into Account the Second-Order Change 

Now, consider the case in which the second-order difference in consumption is 

taken into account. Assume 010 == αα  (and 0== ρr ) at first so that only the 

second-order matters. Then, (23) is rewritten to be, 

 

t  

 

0 
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( ) ( ) ( )122
1

c
t

c
t

c
t λλλ −=−+  for    1,,1 −= Tt  . (26) 

By (24) and (25), 

( ) ( ) ( ) ( )( ) 0~ 122
22

21 2 >+==
−β

βαλλ ccT
c
T

c
T .  (27) 

By (22) and (27),  

( ) ( ) ( ) 011
2

1
1 >≥≥≥ c

T
cc λλλ  ,  (28) 

where the equalities hold for 0=µ . 

Thus, by (25) and (26),  

( ) ( ) ( )22
2

2
1 Tccc ≤≤≤   (29) 

That is, optimal ( )1
tc  is non-convex in time.  

Typical paths of ( )1
tc  and ( )0

tc  are illustrated in Figure 3.2 and 3.3, respectively. 

 

 

Figure 3.2 Optimal Paths of ( )1
tc  ( 010 == αα  and 0== ρr ) 

 

t  

 

 

 

0 
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Figure 3.3 Optimal Paths of ( )0
tc  ( 010 == αα  and 0== ρr ) 

 

It is more difficult to generally characterize the cases in which 0, 10 >αα . 

Instead of listing all possible cases, this study shows a numerical solution as an 

example. The solid line of Figure 3.4 depicts the optimal path of ( )0
tc  for the case 

where 7=T , 0== ρr , 10 =α , 5.021 == αα , 5.0210 === βββ ,  ( ) 10~ 1 =c , 

( ) 50~ 2 =c , ( ) ( ) 01
0

0
0 == cc , ( ) 72.3070

7 =c  and ( ) 10000
0 =a  while the broken line 

corresponds to the case where 02 =α  (and all others are the same.) 8  

When the second-order difference is taken into account, the optimal path is 

drawn so as to reduce the concavity (where it exists) and increase the convexity. In  

                                                 
8  To illustrate the most “natural” case, ( ) 72.3070

7 =c , the optimal value when it can be controlled (and  

02 =a ,) is used as a terminal condition. The same value is also used for 02 >a  to make a comparison. 

 

 

t  

 

 

 

0 
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Figure 3.4 Optimal Path of ( )0
tc  (numerical example) 

 

the cases such as in Figure 3.4, consumption is delayed where concavity or convexity 

is high, given initial and terminal conditions. 
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4. Valuing the Rate of the Change 

In this section, consider another variation: utility is a function of the rate of the 

first-order change (i.e. growth rate) in consumption. Many psychological works, such 

as Weber-Fechner law in Fechner (1860), have argued that sensation of human is 

determined by the relative magnitudes of stimuli but not their absolute levels. Carroll 

et al. (1997) and Carroll et al. (2000) use a model that describes habit formation by 

the ratio of the current level to some reference, instead of the difference. 

Assume that instantaneous utility is written as follows: 9 

( )( ) ( )( ) 10 1
1

0
0

~ ββ
αα ttt ccu +=  (30) 

where ( )
( )

( )0
1

0
1

−

≡
t

t
t c

c
c . 

The Lagrangian is,  

( )( ) ( )( ){ }∑
=

−












+








+

=
T

t
tt

t

ccL
1

1
1

0
0

1
10

1
1 ββ

αα
ρ

 

( )

( )
( )∑

= − 







−+
T

t
t

t

t
t c

c
c

1

1
0
1

0

λ  

( )




















+

−



















+

−+ ∑
=

−

T

TT

t
t

t

a
r

c
r

a
1

1
1

1
1

0
1

0µ .
 

(31) 

Differentiating (31) with respect to the control variables, the first-order 

conditions are obtained as follows: 

                                                 
9 ( )1~c  is not necessary here because ( )1

tc  is nonnegative. 
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 for    1,,1 −= Tt  , (32)
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
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∂
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c
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L
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Substituting tλ  and 1+tλ  of (33) into (32), the following expression is obtained: 
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
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0
1

1 1

=






+

−
−t

r
µ     for    1,,1 −= Tt  . (34) 

 

Only the Rate of the Change Matters  

First, consider the simplest case in which 00 =α  and 0== ρr . In addition, if 

initial asset ( )0
0a  is large enough to make 0=µ , it follows from (34) and the definition 

of ( )1
tc  that ( ) ( )11

1 tt cc =+ . Thus, in this simplest case, the rate of the change must be 

constant. Figure 4.1 indicates the corresponding consumption path. Note that, when 

the rate is constant, logarithmic transformation makes the line to be straight. 
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Figure 4.1 Only the Rate of the Change Matters (Left: Original, Right: In Terms 

of Logarithms) 

 

Both the Rate of the Change and the Absolute Level Matter 

Now, consider more general case in which 0,0 >µα  while 0== ρr . Then, 

(34) is rewritten as: 

( )( ) ( )( ) 11 1
111

1
11

ββ
βαβα ++− tt cc ( )( ) ( )00

00
0

tt cc µβα
β
−=

 
(35) 

Thus, 

( ) ( )11
1     tt cc
<
=
>

+     as    ( ) 01
1

000     
β

µ
βα −










<
=
>

tc . (36) 

That is, the convexity is larger for higher ( )0
tc  and smaller for lower ( )0

tc . For 

increasing 
( )0
tc , typical patterns are drawn such as in Figure 4.2. Logarithmic version 

well characterizes the behavior the curves: When a curve is convex (concave,) the  

 

t  

 

0 

 

 

t  

 

0 
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Figure 4.2 The Cases in which 0,0 >µα  (Left: Original, Right: In Terms of 

Logarithms) 

 

growth rate is increasing (decreasing.) If the amount of initial asset is small so that µ  

is large, an individual consumes relatively small amount at first and the growth rate 

increases at an increasing rate.  

  

 

t  0 

 

t  

 

0 
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5. Valuing Asset in Each Period 

As the third variation of the model, consider the case in which utility is also a 

function of the level of asset remaining in each period. Suppose, instead of (18) or 

(30), the instantaneous utility is expressed as follows: 

( )( ) ( )( ) ( ) ( )( ) 10 11
1

0
0

0 ~~ βββ
ααα cccau tttat

a +++= , (37) 

As for the initial and terminal conditions, use the ones in (19). 

( ) ( )0
0

0
0 cc = ,    ( ) ( )1

0
1

0 cc = ,    ( ) ( )00
TT cc =     and    ( ) ( )0

0
0

0 aa = . 

Then, the Lagrangian is rewritten to be: 
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
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1 βββ
ααα

ρ
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− −−+
T

t
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1

10
1

0λ
 

( ) ( ) ( )( ) ( ){ }∑
=

− −−++
T

t
tttt acar

1

000
11µ . (38) 

The first-order conditions are as follows: 
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Only Asset Matters 

First of all, if only the level of asset matters ( 010 == αα ), it follows directly 

that ( ) 00 =tc  for all periods. That is, an individual keeps the initial asset ( )0
0a  for life 

because consumption does not affect his/her utility at all. 

 

Both Asset and Consumption Matter 

Next, consider the case where 0, 0 >αα a  but 01 =α . For 0== ρr , tt µµ <+1  

by (39) so that ( ) ( )00
1 tt cc >+ . The profile is typically drawn as in Figure 5.1. An 

individual postpone consumption in order not to reduce his/her asset in early 

periods.10  

 

 

Figure 5.1 Valuing Asset 

                                                 
10 ( )0

tc  ( 11 −≤≤ Tt ) is determined independently from ( )0
0c  or ( )0

Tc  as long as 01 =α . 

 

t  1 
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Asset, Consumption and Its Change Matter 

Finally, assume that 0,, 10 >ααα a  (and 0== ρr .)
 

Again, tt µµ <+1  by (39). By (40), either ( )0
tc  is smaller or 1+− tt λλ  is larger (or 

both) in earlier periods. Although the results depend on the parameters in general, 

noting ( )0
0c  and  ( )0

Tc   affect 1λ  and  Tλ , respectively, the profile is typically drawn 

such as in Figure 5.2. The solid line corresponds to the case where the asset matters 

( 0>aα ,) in contrast to the the broken one ( 0=aα .) 

 

 

Figure 5.2 Typical Path When Asset, Consumption and Its Change are Valued  

 

 

  

 

t  

 

0 
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6. Evaluating Actual Growth 

So far, the study has dealt with the optimal consumption path at a viewpoint of 

initial period. However, because of any liquidity constraints or uncertainty about 

future income, sometimes the consumption of an individual can be largely affected by 

his/her current income, which is given exogenously by the society. This section 

compares the lifetime utility levels that correspond to several typical consumption 

paths to each other, assuming an individual does not control them. First, start with the 

cases in which only the absolute level of consumption or its first-order change matters. 

 

6.1 Absolute Value or First-Order (Rises and Declines) 

Consider five typical consumption paths, indicated in Figure 6.1, which 

characterize increases and decreases in consumption. The relative orders of the 

lifetime utility levels are summarized in the table below, assuming 0=ρ . If 00 >α  

and 021 == αα  in the model of (18), only the absolute level of consumption matters 

so that generally the higher the consumption path is, the better. Moreover, if 10 =β , 

marginal utility of consumption does not diminishes. That is, whenever he/she 

consumes, his/her lifetime satisfaction rises by the same amount. As a result, paths i, 

ii and iii are equivalent (although most experimental or empirical studies show that 

few people actually feel so.) When 020 == αα  but 01 >α  , an individual is only 
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concerned about the change. As a result, ii and iv (iii and v) are equivalent while the 

resources necessary for those paths are different. Note that, while v is better than i or 

ii for an individual who values the absolute level (and v requires more resources,) it is 

worse than i or ii for one who values the change. 

 

 

Figure 6.1 Rises and Declines  

 

  

 

t  

i 

0 

ii 

iii 

iv v 
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00 >α , 021 == αα  and 10 =β : 

∗∗∗∗∗ ==>= iiiiiiviv UUUUU  

00 >α , 021 == αα  and 10 <β : 

∗∗∗∗∗ =>>= iiiiiiviv UUUUU  

020 == αα  and 01 >α : 

∗∗∗∗∗ =>>= viiiiivii UUUUU  

 

6.2 Soar, Plunge and Dip 

Next, consider the effects of a sharp increase or decrease. Suppose ix (dip) 

occurs in a short time. Then, for an individual who values the absolute level, vi and ix 

give similar lifetime satisfactions while vii and viii give lower ones. For an individual 

who values the change, because of diminishing marginal utility of change, ix is worse 

than vi. vii is better than vi, contrary to the absolute-level lovers.  
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Figure 6.2 Soar, Plunge and Dip  

 

00 >α  and 021 == αα : 

∗∗∗∗ =>≅ viiiviiixvi UUUU  

020 == αα  and 01 >α : 

∗∗∗∗ >>> viiiixvivii UUUU  

 

6.3 Second-Order or Rate of the Change 

Finally, contrast increase with growth. An individual who values the absolute 

level or first-order change prefers a constant increase over a convex one. As has been 

argued in Sections 3 and 4, an individual who is concerned about the second-order 

change or who cares for the “growth rate” prefers a convex path. This type of convex 

 

t  0 

ix 

viii 

vi 

vii 
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path can be also preferred by an individual who takes into account the level of the 

remaining asset, such as the case in Section 5. 

 

 

Figure 6.3 Convex Changes 

 

00 >α  and 021 == αα : 

∗∗∗ >> xvxvixiv UUU  

020 == αα , 01 >α : 

∗∗∗ >> xvxvixiv UUU  or ∗∗∗ >≥ xvxivxvi UUU  

00 =α , 0, 21 >αα  or “rate of the change” matters: 

∗∗∗ >> xivxvxvi UUU  

  

 

t  0 

 

xiv 

xv 

xvi 
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Conclusion 

This study has extended Yonemoto (2013) and characterized the behavior of an 

individual whose instantaneous utility is a function of the (first-order and higher-

order) changes in asset as well as consumption. In particular, it has investigated the 

cases in which an individual takes into account the second-order change in 

consumption, the rate of the first-order change or the level of remaining asset. It has 

been shown that, in any case, an individual tends to postpone consumption in earlier 

periods in comparison with the case in which they do not matter. 

In addition, the lifetime utility levels that correspond to several given 

consumption paths have been compared with each other. Some examples of the 

reversal in the order, depending on the functional form, have been presented. 

Future extensions may include introduction of more general time discount factor, 

consideration of the effects of the comparison with others (e.g. demonstration effect) 

and conducting empirical studies which support the theoretical conclusions as well as 

the assumptions. 
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Appendix 

The Hamiltonian is: 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )∑∑
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The Lagrangian is: 

( ) ( ) ( ) ( ) ( ) ( )( )M
ttt

N
tttt aaaccctgHL ,,,,,,,, 1010 µ+=  

The necessary conditions for maximization are: 
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    (adjoint equations,) 
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vi)     
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    and 
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∗λ     (transversality condition.) 

Suppose the constraint is specified by (15) and (16). Then, Euler’s equation is 

derived to be, 
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