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Abstract    

This study investigates the behavior and welfare of an individual whose 

instantaneous utility is a function of the change in his/her consumption, as well as the 

absolute level.  

The behavior is largely affected by the initial and terminal conditions on the 

levels of consumption. Without a terminal condition, an individual, who has a 

preference for positive change, tends to postpone his/her consumption until later. With 

a condition, the consumption path is largely determined by backward (and forward) 

“consumption smoothing.” 

Several applied topics such as Kahneman and Tversky-type modeling and 

capital accumulation are also discussed.  
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1. Introduction 

Anyone who is acquainted with economic theory knows that a model is some 

simplification of the real world. Most of the fundamental models, however, have been 

considered as good approximations of it: In spite of some anomalies, major 

mechanisms seem to be properly taken into account and deduced results would not be 

far from the reality, ceteris paribus. Among them is Discounted Utility Model, which 

has been used in most studies of intertemporal consumption choices since it was 

introduced by Samuelson (1937). 

Yet, if one is serious enough, he/she may find that there is little intuitive or 

empirical support for the Discounted Utility Model. The model assumes lifetime 

satisfaction or happiness of an individual is described by the (discounted) sum of 

his/her utilities over time, each of which is a function of income or consumption in the 

corresponding period. Then, it is possible that some consumption profile which 

enables an individual to have “miserable days in the first half of life but happy ones in 

the latter half” is equivalent to another profile which brings “happy days in the first 

half of life but miserable ones in the latter half” (with some adjustments on the 

consumption levels taking into account the discount factor.) Not to mention Aesop’s 

the Ant and the Grasshopper, few people may agree that they are equivalent.  
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Actually, since the seminal work of Easterlin (1974, updated in 1995), 

numerous studies have discussed whether or not a large part of human satisfaction is 

characterized by the absolute level of income (or consumption.) As Clark et al. (2008) 

summarizes, many studies have admitted the existence of “Easterlin Paradox,” which 

presumes limited or little contribution of absolute levels to satisfaction.1 2 

The most straightforward interpretation of “Easterlin Paradox” is that one’s 

satisfaction is based on some comparison with others or one’s own state in the past. 

The idea dates back to the “Relative Income Hypothesis” of Duesenberry (1949). 

Taking into account the hypothesis, empirical findings such as Di Tella et al. (2003), 

Stutzer (2004), Di Tella et al. (2005) have reinforced the interpretation.  

Some behavioral economists have also focused on the issue. Kahneman and 

Thaler (1991) states “comparisons to others and especially to one’s past determine the 

standard of satisfaction with income.” The models of habit formation, such as Pollak 

(1970), have been used to characterize the human behavior based on a similar idea. 

Extensions include those of Gilboa (1989), which explicitly considers utility 

variation between two consecutive periods, Loewenstein and Prelec (1993), which 

models global properties of a sequence and argues “Preference for Spreading” and 

                                                 
1 Some studies, such as Stephenson and Wolfers (2008), have presented skepticism on “Easterlin 

Paradox.” Frank (2012) further refutes such skepticism. 
2 Sasaki (2008) summarizes the evidences in Japan. 
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Shalev (1997), which takes into account the notion of loss-aversion and the prospect 

theory of Kahneman and Tversky (1979).  

In the context of macroeconomic decision-making, Bordley (1986) and Frank 

(1989) consider continuous-time models. The latter, Frank (1989), and Frank and 

Hutchens (1993) mention the quality of life in the context of habit formation. Carroll 

et al. (1997) and Carroll et al. (2000) analyze saving behavior and capital growth by 

explicitly modeling the speed of adaptation.  

Experimental studies on habit formation include Loewenstein (1987) and 

Lowenstein and Prelec (1991), which are about famous comparison among sequential 

combinations of “Eat at Home ,” “Fancy French” and “Fancy Lobster,” and Hsee and 

Abelson (1991) and Hsee et al. (1991), which are about hypothetical changes in salary 

(or academic performance.) 

Recently, based on the experiment of Loewenstein (1987), Wakai (2008) and 

Wakai (2013) develop theoretical models which characterize “utility smoothing.” 

In spite of those various contributions, there are few articles which model the 

lifetime behavior of an individual and argue his/her quality of life consistently in 

order to indicate the welfare implications of habit formation.  

This study addresses the following research questions: 1) What is the (life-time) 

behavior of an individual who values the first-order change in consumption like? 2) 
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How significant are the initial and terminal conditions in such a (habit-formation) 

model? 3) How do the results change if the utility function (of change) is non-

concave? 4)  What if capital accumulation is explicitly considered? 

On one hand, the approach of this study is somewhat close to Carroll et al. 

(1997) and Carroll et al. (2000), which actually derive several consumption paths 

using models of habit formation (although little argument on well-being is seen in 

their studies.3) On the other hand, the motivation behind this study is close to those of 

Frank (1989) and Frank and Hutchens (1993), which mention the quality of life of an 

individual (while they do not present the implications of their models completely.) 

This study lies between those two groups of studies and develops them.  

The rest of the paper is organized as follows: Section 2 describes the general 

setting of the study. Section 3 and 4 consider the cases in which only the absolute 

level matters and the first-order change does, respectively. Section 5 considers the 

case where both factors are taken into account. Section 6 investigates the case in 

which utility function is not concave but of Kahneman Tversky-type . Section 7 

considers capital accumulation. Section 8 concludes.  

                                                 
3 Also, their models, which seem to be arranged in order to obtain explicit solutions, are slightly 

different from that of this study.  
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2. Maximization Problem 

Suppose the instantaneous utility of an individual is a function of the level of 

his/her consumption and its first-order change.4 Denote the level of his/her 

consumption in period t by ( )0
tc  and the difference from the previous period by ( ) ≡1

tc

( ) ( )0
1

0
−− tt cc .5 Then, consider the following simple additively separable function: 

( )( ) ( ) ( )( ) 10 11
1

0
0

~~ ββ
αα cccu ttt ++= , (1) 

where ( ) 0~ 1 >c . 

In the second term, ( )1~c  is added to ( )1
tc   in order to allow zero or negative ( )1

tc , 

which is regularly observed in the real world. Assume that an individual is endowed 

with initial asset 0a  and lives for Tt ≤≤0 . Denoting the level of his/her asset 

remaining in period t by ta , the intertemporal utility maximization problem is written 

as: 6 7 

( )( ) ( ) ( )( ){ }∑
=

−












++








+

T

t
tt

t

ccc
1

11
1

0
0

1
10 ~

1
1max ββ

αα
ρ

, (2) 

subject to  ( ) ( )( )0
11 ttt cara −+= − , 

( ) ( )0
0

0
0 cc = ,    ( ) ( )00

TT cc = ,    00 aa =     and 

                                                 
4 Yonemoto (2013) investigates more general settings. 
5 Note that there are several ways to define the “difference” around period t such as a weighted average 
of the differences around t ( ( ) ( ) ( )( ) ( ) ( ) ( )( )00

1
0
1

01 1 ttttt ccccc −−+−≡ +− αα .) (1) simply uses the difference of the 

current value from the previous one. It can be regarded as a specific kind of habit formation model.  
6 One may assume utility is also a function of a . Refer to Yonemoto (2013) for example.  
7 Any realistic setting may have a non-negative constraint on ( )0

tc . 
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( ) ( ) ( )0
1

01
−−≡ ttt ccc , 

where r and ρ  are the interest rate and discount rate, respectively.8 

One may wonder if the initial and terminal conditions are in fact necessary.   

Yet, it is natural to think that the first change in consumption in the life of an 

individual is the difference between the pre-birth (or childhood) level, which is 

determined biologically or by the intent of parents, and the level that he/she chooses 

arbitrarily for the first time. Similarly, one can imagine that the last change in his/her 

life is the difference between his/her last choice and the “afterlife” level in his/her 

conception.9 

The structural equations are combined into a single equation by adding up: 

( )
T
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(3) 

The Lagrangian for (2) is, taking into account (3),  
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(4) 

                                                 
8 Some studies of behavioral economics argue if the subjective discount rate changes as time passes by 

(e.g. Wolf (1970).)  This study uses the simplest setting in which the rate is constant. In other words, 

the study considers the life-time consumption plan at the beginning. 
9 One who does not believe in the “afterlife” may presume the level to be zero.  
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Differentiating (4) with respect to the control variables ( ) ( )0
1

0
1 ,, −Tcc   and 

( ) ( )11
1 ,, Tcc  , the following first-order conditions are derived: 

( )
( )( ) 10
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 for    1,,1 −= Tt  , (5)
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Substituting tλ  and 1+tλ  of (6) into (5), the following expression is obtained: 
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The first term in the left-hand side of (7) is associated with ( )0
tc , the level of 

consumption, while the second and third terms depend on ( )1
tc  and ( )1

1+tc , the changes. 

The following two sections investigate two extreme cases to interpret this condition 

clearly. 
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3. No “Utility of Change” 

First, consider one extreme: The utility depends solely upon the level of 

consumption ( 01 =α .) Then, the problem reduces to that of a simple intertemporal 

choice with CRRA (constant relative risk aversion) utility. Condition (7) is rewritten 

to be: 

( )( ) 10
00

1
0

1
1 −

−









+

β
βα

ρ t

t

c 0
1

1 1

=






+

−
−t

r
µ .                 (8) 

Thus,  

( ) ( )00
1     tt cc
<
=
>

+     as    ρ    
<
=
>

r . (9) 

Since the instantaneous utility is concave, an individual tends to avoid a 

fluctuation in consumption. With 0== ρr , the optimal consumption is constant over 

time. With positive r and ρ , the consumption path is skewed according to their 

relative sizes as Figure 3.1 illustrates. 
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Figure 3.1 Optimal Consumption with No “Utility of Change” 
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4. Only “Utility of Change” 

Next, consider the other extreme: The utility depends only on the changes in 

consumption ( 00 =α .) Then, condition (7) becomes: 

( ) ( )( ) ( ) ( )( ) 111
111

111
11

1
11 ~

1
1~

1
1 −

+

−
−

+







+

−+







+

ββ
βα

ρ
βα

ρ
cccc t

t

t

t

0
1

1 1

=






+

−
−t

r
µ . 

                 (10) 

The second term is negative so that ( )1
tc  needs to be balanced with ( )1

1+tc . If r and  

ρ  are zero and 0a , the initial endowment, is large enough to make µ  zero, ( ) ( )1
1

1
+= tt cc  

(see Figure 4.1.) That is, an individual seeks constant change in consumption from the 

initial level ( )0
0c  to the final level ( )0

Tc . (If the initial endowment is larger than the 

amount necessary to sustain the constant change, the remainder is abandoned.) Note 

that, if ( ) ( )00
0 Tcc > , consumption decreases constantly as long as ( ) ( ) 0~ 11 >+ cct  is 

satisfied for all t.  
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Figure 4.1 Optimal Consumption with Only “Utility of Change” ( 0=µ ) 

 

Figure 4.1 also illustrates the case in which 0>ρ  while 0=µ  (and 0=r .)  In 

this case, the increase in an earlier period is larger than the one in a later period 

because of the positive discount rate. Figure 4.2 illustrates other cases assuming 

0=ρ . 0>µ  occurs when the initial endowment is not enough to make the changes 

depicted in Figure 4.1 possible. To reduce the area under the curve, which is the life-

time consumption, the curve is bowed downward. As a result, the amount of the 

change increases as time passes by. If r  increases when 0>µ , the income effect 

raises the curve upward. As a result, it reduces convexity.  
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Figure 4.2 Various Cases When 0=ρ  

 

Variable Initial and Terminal Conditions 

Now, consider the cases in which the initial and/or terminal conditions are 

relaxed. 1) If both are relaxed ( ( )0
0c  and  ( )0

Tc  can be controlled by the individual,) the 

solutions are indeterminate. In this case, by reducing ( )0
0c , one can raise his/her life-

time utility as much as he/she can. In other words, since only the change matters, 

making his/her childhood as “miserable” as possible, one can be better off. 2) 

Similarly, if ( )0
Tc  is fixed but ( )0

0c  is variable, one can increase his/her life-time utility 

by choosing the smallest possible ( )0
0c . Again, the solutions are indeterminate. 3) 

However, if ( )0
Tc  can be chosen while ( )0

0c  is fixed, things are different. In addition to 

(5), the following condition is necessary to characterize the optimal ( )0
Tc : 

 

t  

 

 

 

0 
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( )
( )( ) 10

00

1

0
0

1
1 −

−∗









+

=
∂
∂ β

βα
ρ T

T

T

c
c
L 0

1
1 1

=






+

−+
−T

T r
µλ  , (11) 

where 00 =α  in the case here.  

Although one can increase the lifetime utility by raising ( )0
Tc , now he/she needs 

to take into account the (life-time) income constraint. That is, multiplier µ  is positive 

when ( )0
Tc  is optimally chosen. As a result, the corresponding path of ( )0

tc  can be 

drawn such as those of  0>µ  in Figure 4.2. Figure 4.3 illustrates the optimal path 

derived numerically for 7=T , 0== ρr , 5.01 =α , 5.01 =β , ( ) 00
0 =c , ( ) 10~ 1 =c  and 

( ) 10000
0 =a .10 ( µ  is calculated to be 0.011.) 

 

Figure 4.3 A Numerical Example  

                                                 
10 The elasticity of intertemporal substitution ( )01/1 β−  is often estimated to be less than 1 so that 0β  

(and 0α ) can be  negative. However, since this study also deals with 1α  and 1β , the parameters on the 

changes, the estimates of other studies cannot be applied directly. Moreover, assuming negative β s 

(and α s) brings about a serious problem when a Kahneman and Tversky-type function is defined in 

Section 6.Thus, this study simply uses positive values for numerical calculations. 
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5. Both Factors Taken Into Account 

In this section, consider the case in which both the level of consumption and its 

change constitute the utility: 0, 10 >αα . At first, assume fixed  ( )0
0c  and  ( )0

Tc  again. 

Noting that the entire part of equation (7) matters now, for 0== ρr ,  

( ) ( )11
1     tt cc
<
=
>

+     as    ( ) 01
1

000     
β

µ
βα −










<
=
>

tc . 

That is, if the level of consumption is larger (smaller) than some threshold, the 

curve must be convex (concave.) Figure 5.1 summarizes possible patterns for 

( ) ( )00
0 Tcc < . The optimal path essentially inherits the properties of the curves in Section 

4 as well as the ones in Section 3. The curve is drawn so that some (absolute) level of  

 

 

Figure 5.1 Optimal Paths for 0, 10 >αα  
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consumption is kept as long as possible. At the same time, it smoothly connects the 

start point with the end point to reduce the first-order fluctuation.  

 

Variable Initial and Terminal Conditions 

Next, consider the cases where the initial and/or terminal levels of consumption 

can be controlled. As for the initial level, since it is not accounted for as a part of 

lifetime utility (by definition,) reducing it simply has a positive effect on the change in 

the first period; Like in the case of Section 4, the solution is indefinite.  

As for the terminal level of consumption, raising it has positive effects on both 

the level itself as well as the first-order change. Thus, if it can be controlled, (life-

time) income needs to be exhausted ( 0>µ .) The curve typically has convex as well  

 

 

Figure 5.2 Numerical Solution of an Example  
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as concave parts such as the solid curve in Figure 5.1. Figure 5.2 shows the numerical 

solution when 7=T , 0== ρr , 10 =α , 5.01 =α , 5.010 == ββ ,  ( ) 10~ 1 =c , 

( ) 00
0 =c  and ( ) 10000

0 =a . ( µ  is calculated to be 0.05.) 

 

Comparing the Cases With and Without the Utility of Change 

Finally, investigate what happens to the consumption path when 1α  increases 

from zero (i.e. the change in consumption has no effect on utility) to some positive 

number (i.e. the change has some effect,) keeping the level of initial asset constant. 

Suppose ( )0
0c  is fixed and ( )0

Tc   is variable. Also, assume 0== ρr  for simplicity.  

Then, 01 =α  yields ( ) ( ) Tact /0
0

0 =  for all t so that the optimal path looks like the 

straight line in Figure 3.1.11 If ( )0
0c  is also equal to ( ) Ta /0

0 , an increase in 1α  alters the 

optimal consumption path such as in Figure 5.3.12 The Proof is given as follows: 

i) To show ( )0
tc  has at most one local minimum 

First, show that if ( ) 01
ˆ <tc  and ( ) 01

1ˆ ≥+tc  for some t̂ , then ( ) 01 <tc  for all tt ˆ≤ . 

By (7), 

                                                 
11 Note that ( )0

Tc  is fixed in Section 3 and thus ( ) ( ) ( )( ) ( )1/00
0

0 −−= Tcac Tt . 
12 Without assuming ( )0

0c  is fixed (equal to ( ) Ta /0
0 ) and ( )0

Tc  is variable, comparison makes little sense: 

If ( )0
0c  is variable, as has been argued so far, the solution is indefinite. If ( )0

0c  is fixed but not equal to 
( ) Ta /0
0 , its value irregularly affects the levels of the consumption in the first several periods. Moreover, 

if ( )0
Tc  is fixed and smaller than ( ) Ta /0

0 , some part of the asset can be abandoned.  Even if it is larger 

than or equal to ( ) Ta /0
0 , its value mostly determines the levels of the consumption in the last several 

periods. 
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( )( ) 10
ˆ00

0 −=
β

βαµ tc ( ) ( )( ) 111
ˆ11

1~ −
++

β
βα cct

( ) ( )( ) 111
1ˆ11

1~ −

+ +−
β

βα cct
 

( )( ) 10
1ˆ00

0 −

−=
β

βα tc ( ) ( )( ) 111
1ˆ11

1~ −

− ++
β

βα cct
( ) ( )( ) 111
ˆ11

1~ −
+−

β
βα cct .      

for    1,,2ˆ −= Tt  , (12)
 

Noting ( ) ( ) ( ) 00
1ˆ

0
ˆ

1
ˆ <−= −ttt ccc , it follows that ( ) ( )1

ˆ
1

1ˆ tt cc <− . For the case Tt =ˆ  

( ( ) 01 <Tc ,) by (11) and (12), ( ) ( ) 011
1 <<− TT cc . In either case, by applying (12) repeatedly, 

( ) ( ) << 1
2

1
1 cc  

( ) ( ) 01
ˆ

1
1ˆ <<< − tt cc . Therefore, ( ) ( ) ( ) >>> 0

2
0

1
0

0 ccc ( ) ( )0
ˆ

0
1ˆ tt cc >> − . That is, 

( )0
tc  has at most one local minimum. 

ii) Illustrating the path 

i) implies that ( )0
tc  is monotonically increasing, decreasing or has a local 

minimum. However, if ( )0
tc  monotonically increasing from ( ) ( ) Tac /0

0
0

0 = , the asset is  

 

 

Figure 5.3 Comparing the Cases With and Without the Utility of Change 

 

t  
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used up before T . Moreover, if it is monotonically decreasing or has a local minimum 

but is ending with ( ) ( ) TacT /0
0

0 ≤ , ( ) ( ) Tact /0
0

0 =  for all t is obviously better. Thus, ( )0
tc  

has a local minimum and ( ) ( ) TacT /0
0

0 > . 
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6. Kahneman and Tversky-Type Function 

So far, the (instantaneous) utility function has been well-behaved so that the 

optimal paths have not had irregular jumps. However, if the utility function has any 

convex parts, a large jump can be observed. 

As illustrated in Figure 6.1, the value function proposed by Kahneman and 

Tversky (1979) is convex for “losses.” Instead of defining the “gains” or “losses” by 

using the level of consumption and some arbitrarily-chosen reference point, this study 

has characterized them by the (first-order) differences in consumption.13 The model 

can be extended by assuming the followings: 

( ) 01 >
∂
∂

tc
u , 

 
( )( )

021

2

≥
≤

∂

∂

tc
u

    for    ( ) 01

≤
≥

tc     and  

( ) ( )( )
( )1

10 ,

t

tt

c
ccu

∂
∂

 

( ) ( )( )
( )1

10 ,

t

tt

c
ccu

∂
−∂

<     for    ( ) 01 ≥tc .14 (13) 

 

                                                 
13 That is, the level of consumption in the previous period is regarded as the reference point and it is 

renewed every period. 
14 The expression is based on that of Tversky and Kahneman (1992) though it has an inconsistency at

( ) 01 =tc . 
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Figure 6.1 Value Function of Kahneman and Tversky 

 

A Simple Case 

Noting (13), specify the utility function as follows:1516  

                                                 
15 Some behavioral economists strictly distinguish “utility function” from “value function.” Note that 

this study is using the terminology “utility” in a broader sense. 
16 Other specifications  may include the ones such as  
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The reason of having a unique ( ) ++ 111 β

tc   or ( ) −− 111 β

tc   and the above expression (or a common 

β  in the text) is due to the fact that: 

For  11 ββ ′> , 11 ββ ′

<
≥

xx   as  1
<
≥

x .  

That is, the relative values are reversed around 1=x .  

For the third and fourth lines of (13) to be satisfied, (for one function to be always larger than the other,) 

1≥x  must be guaranteed. Also, it is desirable for the values of the two functions to coincide with 

each other at ( ) 01 =tc . Thus, 1 is subtracted from the expressions.  

Value 
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01 >+α ,    01 <−α ,    +− > 11 αα ,  

10 1 << β . 

First, investigate the case in which 00 =α  and 0== ρr . Then, if the utility 

function is concave (as usual,) the solid curve or straight line in Figure 4.2 

characterizes the optimal path. However, if the utility has a convex part, there can be 

another type of solution. 

Consider reducing ( )1
tc  of some period and raising those of the other periods. 

Note that, as long as ( )0
0c  and ( )0

Tc  are fixed, the sum of the new changes must be zero. 

Since the utility function is convex in the negative domain, as ( )1
tc  is reduced, its 

marginal effect declines. If the corresponding amount of ( )1
tc  is distributed among 

many other periods, the life-time utility may rise because there are only small changes 

in the marginal effects on the recipient side: An individual receives more daily bread 

in exchange for extraordinary misery in some period.  

Figure 6.2 illustrates the idea more clearly. For simplicity, suppose 0a  is 

sufficiently large so that the (life-time) income constraint does not bind ( 0=µ .) 

Then, without convexity, ( ) ( ) ( )( ) Tccc Tt
0

0
01 −=

∗  constitutes the best path of ( )1
tc . 

When ( )1
t̂c , ( )1

tc  of period t̂ , is reduced by ( )1c∆ , the utility of that period decreases  
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Figure 6.2  

 

from ( ) 11
1

β
α ∗

+ tc  to ( ) ( ) 111
1

β
α cct ∆−

∗

− . However, by raising ( )1
tc  of the other periods 

by ( ) ( )1/1 −∆ Tc , each increases ( ) 11
1

β
α ∗

+ tc  from to ( ) ( ) ( ) 1

1/11
1

β
α −∆+

∗

+ Tcct . If 

the slope in the negative domain is flatter enough and T is sufficiently large, the 

life-time utility rises.  

Next, consider more general case: 0, 10 >αα . If the absolute level of 

consumption is also accounted for, the (life-time) income constraint always binds 

( 0>µ .) Then, the choice the period in which ( )1
tc  is reduced is also crucial. Reducing 

( )1
tc  in earlier period(s) is typically better because it saves the asset.  

Figure 6.3 indicates the constrained and unconstrained optimal paths of ( )0
tc  

calculated numerically for 7=T , 0== ρr , 1.00 =α , 5.01 =+α , 6.01 −=−α , 

5.010 == ββ ,  ( ) 1000
0 =c  , ( ) 3000

7 =c  and ( ) 10000
0 =a .  

 

 

 

 
 

0 
 

 

 

 



 24 

 

Figure 6.3 Comparing Paths of ( )0
tc  

 

While the broken line corresponds to the optimal path when ( )1
tc  is constrained 

to be positive (i.e. only the concave part of the utility function is effective,) the solid 

line indicates the unconstrained one (i.e. the convex part of the utility function can be 

used.)  The life-time utility of the former is 22.02 and that of the latter is 22.83. The 

latter profile exhibits a sharp decline in the first period and rises in the other periods. 

That is, “work now, play later” is the best for him/her. 
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7. Capital Accumulation 

In the preceding sections, it has been assumed that an individual is endowed 

with some fixed amount of asset. This section extends the model to consider capital 

accumulation and resulting economic growth.  

A model of capital accumulation does not usually characterize the decision-

making of an individual but a country. Thus, there are several points to be noted 

before proceeding to the analysis: 1) An individual lives for finite periods but a 

country (or a family,) which consists of individuals with a bequest motive or any 

altruistic consideration, may last forever. 2) As has been argued so far, an individual 

may have a “terminal condition” on his/her consumption while a country usually does 

not, even if the planning horizon is finite. 3) Basic (domestic) model of capital 

accumulation does not allow a country to borrow or lend. As a result, it needs to 

develop on its own and the interest rate is endogenously determined. However, an 

individual can usually borrow or lend (at market rate) and does not need to be 

perfectly independent from the society.  

Despite those concerns, investigating the model with capital accumulation is of 

theoretical interest. Then, one may ask: How the outcome differs from the traditional 

one when the change in consumption matters? 
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Throughout this section, consider not a Kahneman Tversky-type but a simple 

concave utility function. Suppose that the production is described by a Cobb-Douglas 

function of capital ( )0
tK  and labor tL  in each period: 

( )( ) ( ) kk

ttt LKY γγ
γ −= 10

0  (15) 

It is either consumed or invested: 17 

( ) ( )1
1

0
++= ttt KCY  (16) 

where ( ) ( ) ( )00
1

1
1 ttt KKK −≡ ++  

In per-capita terms, assuming the growth rate n of population (labor) is constant, 

(16) can be rewritten as: 

( )( ) ( ) ( ) ( )0
1

1
1

00
0 ++ ++== ttttt nkkcky kγγ  (17) 

where ttt LYy ≡ , ( ) ( )
ttt LCc 00 ≡ , ( ) ( )

ttt LKk 00 ≡ , ( ) ( ) ( )00
1

1
1 ttt kkk −≡ ++ , 

and 
t

tt

L
LLn −

= +1 . 

The planner maximizes the (discounted) sum of the utilities of a representative 

individual over periods T,,1  and the value of capital remaining in 1+T , measured 

by asset function φ :18 Using (2), 

                                                 

17 (15) and (16) can be written as ( )( ) ( ) kk

ttt LKY γγ
γ −

−= 10
10  and ( ) ( )10

ttt KCY += , respectively, to be 

consistent with (2). However, taking into account common macroeconomic notations, time suffix of 

capital (asset) is redefined in this section. 
18 The functional form is specified later in this section. Without the asset function, the economy has no 

incentive to accumulate capital in later periods and zero or negative investments are to be seen.  
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Noting (17), the Lagrangian for this problem is,  
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The first-order conditions are: 
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19 In this section, ( )0

Tc  is assumed to be variable. 
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( ) =∂
∂ ∗

1
tk

L ( ) 01
1 =−− −

y
t

k
t λλ  ,  for    1,,2 += Tt  , (25) 

The only difference of (20) and (22) from conditions (5) and (6) is that 

( ){ } 111 −+ trµ  is replaced by y
tλ . By (23) and (25), 

y
t

t

y
t r

n
11

1
−+

+
= λλ  for    Tt ,,2 = , (26) 

where ( )( ) 10
0

−
= k

tkt kr γ
γγ . 

Note that tr  decreases as ( )0
tk  grows. If initial ( )0

0k  is sufficiently small, y
t

y
t 1−< λλ  

as long as nrt >  .  

 

Comparing the Cases With and Without the Utility of Change 

Finally, compare the consumption path derived from the above conditions with 

the traditional one.  

i) Shape of the path of ( )0
tc   

The modified golden rule of this problem is ( )( ) 10
011 −∗∗ +=+ kkr kt

γ
γγ

( )( )ρ++= 11 n . Suppose ( )0
0k  is sufficiently small so that the steady state is not 

reached within the planning horizon. Then, if 01 =α (the change does not matter,) by 

(20), (21) and (26), ( )0
tc  is increasing in t.20 

                                                 

20 Concavity or convexity of ( )0
tc  is not generally asserted by the conditions. 
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For 01 >α , similarly to that of (the latter part of) Section5, show that if ( ) 01
ˆ <tc  

and ( ) 01
1ˆ ≥+tc  for some t̂ , then ( ) 01 <tc  for all tt ˆ≤ . 

By (20) and (21), 

( ) y
t

t
1ˆ

2ˆ1 −
−+ λρ  

( )( )
( )( ) ( ) ( )( ) ( ) ( )( )









+
+

−++
++

+
=

−

+

−− 111
1ˆ11

111
ˆ11

10
ˆ00

ˆ 110 ~
1

1~
11

1 βββ
βα

ρ
βαβα

ρ
ccccc

n
r

ttt
t

 

( )( ) 10
1ˆ00

0 −

−=
β

βα tc ( ) ( )( ) 111
1ˆ11

1~ −

− ++
β

βα cct
( ) ( )( ) 111
ˆ11

1~
1

1 −
+

+
−

β
βα

ρ
cct .      

for    1,,2ˆ −= Tt  , (27)
 

If ( )( )ρ++>+ 111 nrt
 
for all t, by the same logic used in the latter part of 

Section 5, ( ) ( ) ( ) >>> 0
2

0
1

0
0 ccc ( ) ( )0

ˆ
0
1ˆ tt cc >> − . That is, ( )0

tc  has at most one local 

minimum. 

ii) Relative position 

Show that the path of ( )0
tc  drawn when 01 >α  intersects its original ( 01 =α ) 

counterpart at least once.  

Suppose not. Then, one of the following is the case: 1) the former coincides 

with the latter in all periods, 2) the former is higher than the latter in at least one 

period and higher than or equal to the latter in any other periods or 3) the former is 

lower than the latter in at least one period and lower than or equal to the latter in any 

other periods. 
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It can be easily confirmed that the first-order conditions are not satisfied if 1) is 

the case. As for 2), the latter ( 01 =α ) path is inefficient because the former ( 01 >α ) 

is feasible and always gives better (or at leat equal) ( )0
tc s even when 01 =α . And it 

can be shown that 3) is not possible as follows: 

(17) can be rewritten to be: 

( ) ( )( ) ( ) ( ){ } ( )0000
0

0
1 1

1
ttttt kcnkk

n
k k +−−

+
=+

γ
γ  (28) 

Thus, by reducing ( )0
tc , ( )0

1+tk  increases. When ( )0
1+tk  increases while ( )0

1+tc is not 

raised, ( )0
2+tk  also increases because: 

( )
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dk
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+
+

=
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+

1
1 2

0
1

0
2  (29) 

As a result, ( )0
Tk  is larger than the original ( 01 =α ) level. It can be easily 

confirmed that ( )0
Tc  must be larger. A contradiction. 

Figure 7.1 illustrates the optimal paths of ( )0
tc  calculated numerically for the 

cases of  01 =α  (broken line) and 005.01 =α  (solid line) when 7=T , 01.0=ρ , 

02.0=n , 5.00 =α , 5.010 == ββ , ( ) 1~ 1 =c , 50 =γ , 4.00 =γ , ( ) 976.340
0 =c  , 

( ) 8000
1 =k . The asset function is specified as:21 

 ( )( ) ( )( ) ( ){ } 1
00

00
0 01 −

−
+

≡
βγ

γα
ρ
ρφ ttt nkkk k . 

                                                 
21 The asset function is defined so as to make the present value of the flow of steady-state level of 

consumption coincide with the value of the steady-state level of capital. In the setting of this section, 

the steady-state levels of consumption and capital are calculated to be 163.60)0( =∗c  and 

023.084,1)0( =∗k , respectively.   
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The solid line represents a typical case in which an individual saves (and 

invests) more in earlier periods and raises consumption in later periods if 1α  is 

positive. 

 

 

 

Figure 7.1 Capital Accumulation and Optimal Paths of ( )0
tc  
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Conclusion 

This study has characterized the behavior of an individual who values the 

change in his/her consumption. It has been shown that, although an individual tends to 

seek an upward-sloping consumption path, if there are initial and terminal conditions, 

the overall shape of the path depends highly on them. When an individual is 

concerned with both the (first-order) change and the absolute level, the path is 

concave when the amount of initial asset is relatively large, convex when it is 

relatively small and has both concave and convex parts when the amount is in 

between them. In the case utility function is of Kahneman and Tversky-type, sharp 

decline in an earlier period, followed by gradual increases, typically results.  

Further, the case in which capital accumulation is taken into account has been 

investigated. For initial level of capital lower than that of steady state, if the change in 

consumption matters, relatively larger saving (investment) in earlier periods and 

higher consumption in later periods typically take place. 

Extensions of this study may include utility as a function of asset and as a 

function of the rate of the change in consumption or the second (and higher) order 

changes. Also, the levels of life-time satisfactions can be compared for given typical 

consumption paths. Moreover, any related empirical studies can be performed. 
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