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Abstract

This paper analyzes a mixed oligopoly model with one public �rm
and two private �rms in a two-dimensional square city. Three types of
spatial equilibria are presented: (i, central symmetry) the public �rm
locates at the center, the private �rms locate equidistantly away from
the center on a diagonal in the opposite direction each other; (ii, full
agglomeration) the public �rm locates slightly away from the center on
a diagonal and two private �rms agglomerate on the opposite half of
the diagonal; (iii, partial agglomeration) in one dimension the locations
of private �rms coincide but di¤er from that of the public �rm, and
with regard to the other dimension the public �rm locates at the center
and the private �rms locate equidistantly away from the center in the
opposite direction each other.
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1 Introduction

Hotelling�s (1929) seminal work showed that duopolistic �rms agglomerate in

the center of a one-dimensional space (a linear city) although d�Aspremont

et al. (1979) revised the result as maximum di¤erentiation under spatial

Bertrand competition. On the other hand, Hamilton et al. (1989) and An-

derson and Neven (1991) developed location-then-quantity (Cournot) com-

petition models. By contrast, they consequently showed the agglomeration

of �rms in the center (minimum di¤erentiation).

Matsushima and Matsumura (2003, henceforth �MM�) focused on an

observation that in a mixed market private �rms often provide a di¤erent

good or service from public sector but it is similar to other private �rms�

(herd behavior of private �rms). For this to be explained, MM incorporated

a welfare-maximizing public �rm into a spatial Cournot model. As a result,

in their circular city all private �rms agglomerate at a point that is the

farthest from the public �rm. And as an extension, in their linear city there

are two types of equilibrium: (i) All private �rms agglomerate (Proposition

1, p. 71). (ii) Firms agglomerate at two points if and only if the number of

the private �rms is even (Proposition 4, p. 73). These results indicate that

public �rm has a strong repelling-e¤ect against private �rms because the

public �rm sets the price of each market at its transport cost (marginal cost
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pricing), which means markets near the public �rm are very competitive for

the private �rms. At the same time, private �rms share the same objective

to rival the public �rm; they consequently choose the same location.

This paper extends MM into a two-dimensional square city. When it

comes to two-dimensional Cournot competition without a public �rm, both

Berenguer-Maldonado et al. (2005) and Ago (2008) have shown that �rms

agglomerate in the center when space is a disk or a rectangle. Because this is

an essentially identical result as in linear space, one may think that we do not

need any change in dimensionality. However, with regard to spatial Bertrand

competition, dimensionality matters. In their location-then-price competi-

tion in a multi-dimensional city, Tabuchi (1994) and Irmen and Thisse (1998)

showed that maximum di¤erentiation occurs in only one dimension, while

minimum di¤erentiation is achieved in the rest of the dimensions. Hence,

with dispersion force or repelling e¤ect, it is important to have a formal

result of how �rms run away from their rivals, a problem that is more com-

plex and non-trivial because there are many directions for dispersion. That

is why this paper tackles on the dimensionality problem.

Another reason for multi-dimension is relevance to the real world. MM

suggested �Television programs supplied by the Japan Broadcasting Corpora-

tion (NHK) are quite di¤erent from those of private broadcasting companies,
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which are quite similar to each other (p. 63).� It seems true that a public

broadcasting company prefers a more serious program like news to an en-

tertainment or a shopping one, which rather concerns private broadcasting

companies. However, with regard to a political aspect, the public company

(is e¤ectively required to) chooses a moderate course, while positions of the

private companies di¤er: conservative or liberal stance. Such a complex po-

sition can be analyzed by a multi-dimensional model. That is another merit

of the paper.

The remainder of the paper is organized as follows. In Section 2, the

two-stage location-then-quantity game is presented. In Section 3, quantity

choice is analyzed in the second stage by backward induction. Then, Section

4 yields location equilibria in the �rst stage. Section 5 summarizes the

results.

2 The model

Our model is based on a one-dimensional model developed by MM (Mat-

sushima and Matsumura, 2003), who analyzed a location-then-quantity com-

petition model with a welfare-maximizing public �rm among private �rms. I

extend it to a two-dimensional model with simpli�cation in two ways: First,

the functional form of transport costs is assumed quadratic in Euclidean
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distance. Second, the number of the private �rms is two. Except for those

aspects, MM and this model are identical in order to be better compared.

We consider a two-dimensional city expressed by a square on x-y coor-

dinates, L = f(x; y) 2 R2 : �1 � x � 1;�1 � y � 1g, and consumers

are uniformly and continuously distributed on L with a density of one at

each location. There are a welfare-maximizing public �rm (�rm 0) and two

pro�t-maximizing �rms (�rm 1 and �rm 2) that supply a homogeneous good

with zero marginal cost. Let �rm i�s location be (xi; yi) 2 L.

We analyze a two-stage location-then-quantity game with subgame per-

fection being the equilibrium concept. In the �rst stage, each �rm simulta-

neously chooses its location. In the second stage, each �rm simultaneously

chooses its quantity given their locations. Based on the literature, �rms bear

transport costs and they can set a supply amount for each location indepen-

dently because arbitrage between consumers is assumed to be prohibitively

costly.

Each consumer at (x; y) has the same inverse demand function as follows:

P (x; y) = a� bQ(x; y); Q(x; y) =
2X
i=0

qi(x; y); (1)

where P (x; y) is the price at (x; y), qi(x; y) (i = 0; 1; 2) and Q(x; y) is supply
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amount of each �rm and the total supply amount there. a and b are positive

constants.

The transport costs are the same for the �rms and are linear to supply

amount. The unit transport cost is quadratic with regard to Euclidean

distance between a �rm and a consumer. Let di(x; y) denote the distance

between a consumer at (x; y) and �rm i. Then, the transport cost is given

by

tdi(x; y)
2 = t[(xi � x)2 + (yi � y)2];

where t is the transport cost parameter and is assumed to be su¢ ciently low

such that

a > 24t; (2)

which ensures that the public �rm always serves the entire city, irrespective

of the locations of the �rms.1

For private �rm i, the local pro�t at (x; y) and the total pro�t are given

1More generally, the condition is a > (n + 1)�t, where n is the number of private
�rms and �t is the maximal transport cost for the public �rm. In our model, n = 2 and
�t = t (max d0(x; y))

2 = t
�p
22 + 22

�2
yield the threshold of (2).
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by

�i(x; y) = qi(x; y)
�
P (x; y)� tdi(x; y)2

�
;

�i =

ZZ
L
�i(x; y)dxdy;

where P (x; y) is given by (1). Let w(x; y) denote the social surplus (con-

sumer surplus plus the sum of the pro�ts) at (x; y):

w(x; y) =

Z Q(x;y)

0
(a� bm) dm�

2X
i=0

tdi(x; y)
2qi(x; y);

and the (total) social surplus is

ss =

ZZ
L
w(x; y)dxdy:

3 Quantity choice

First, we analyze the second-stage game. In this stage, we can apply the

same analysis in MM because only distance matters, irrespective of dimen-

sionality. Therefore, following important results in MM are clearly valid

here as well:
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Remark 1 (Lemma 1 in MM, p.69) In equilibrium,

P (x; y) = td0(x; y)
2; Q(x; y) =

a� td0(x; y)2
b

: (3)

Remark 2 (Lemma 2 in MM, p.69) Consumer surplus, cs, does not depend

on (xi; yi) (i = 1; 2) and is given by

cs =

ZZ
L
cs(x; y)dxdy

=
2

45b
[45a2 � 30at

�
2 + 3x20 + 3y

2
0

�
+t2

�
28 + 45x40 + 45y

4
0 + 120x

2
0 + 120y

2
0 + 90x

2
0y
2
0

�
]; (4)

where cs(x; y) is consumer surplus at (x; y), which is

cs(x; y) =

�
a� td0(x; y)2

�2
2b

:

Note that if we rewrite (x0; y0) as (r cos �; r sin �), then we have

cs =
2

45b

�
45a2 � 30at

�
2 + 3r2

�
+ t2

�
28 + 120r2 + 45r4

��
;

and

@cs

@�
= 0;

@cs

@r
= 60tr

�
�3a+

�
4 + 3r2

�
t
�
< 0;
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where the inequality is due to (2). Therefore, the nearer to the center the

public �rm is, the greater cs becomes.

Remark 3 (Lemmas 3 and 4 in MM, p.70) Firm i (i = 1; 2) supply positive

amount of qi(x; y) at (x; y) if and only if d0(x; y) > di(x; y), where

qi(x; y) =
t
�
d0(x; y)

2 � di(x; y)2
�

b
;

and its pro�t is

�i(x; y) = b [qi(x; y)]
2 :

Remark 4 (Lemma 5 in MM, p.71) The pro�t of each private �rm does

not depend on the location of the other private �rm:

�i(xi; yi;x0; y0) =

ZZ
Li

�i(x; y)dxdy; (5)

where Li (i = 1; 2) denotes the domain in which �rm i serves:

Li = f(x; y) : d0(x; y) > di(x; y)g \ L:

Note that the market boundary of d0(x; y) = di(x; y) is the perpendicular

bisector of the line segment jointing the locations of �rm 0 and �rm i.
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4 Location equilibrium

We analyze the �rst-stage game given the results in the second stage. With-

out loss of generality, we henceforth assume that 0 � x0; y0 � 1. Fur-

thermore, due to symmetry and for notational convenience, we will omit

any equilibria that is symmetric with another equilibrium: For example,

if f(x0; y0); (x1; y1); (x2; y2)g = f(0; 0); (1=2; 1=2); (�1;�1)g were an equilib-

rium; f(0; 0); (�1=2;�1=2); (1; 1)g, which were clearly another equilibrium,

would be omitted because it is regarded as essentially the same equilibrium.

First of all, symmetry yields the following intuitive result.

Lemma 1 The public �rm locates on x-axis (y-axis) if and only if the pri-

vate �rms locate equidistantly away from x-axis (y-axis) in opposite direction

each other. In other words, in equilibrium, x0 = 0 () x1 + x2 = 0 and

y0 = 0 () y1 + y2 = 0.

Proof. See the appendix.

This lemma classi�es the types of location equilibria. For the public

�rm to choose the center, (x0; y0) = (0; 0), the private �rms must locate

symmetrically with regard to the center, (x2; y2) = (�x1;�y1). Let this

case be named central symmetry, which will be analyzed in Subsection 4.1

below.
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On the other hand, unless the public �rm locates on either of two axes,

symmetry breaks down. From Remark 4, the pro�t functions of both private

�rms are only dependent on locations of public �rm and of its own; hence,

both �rms would choose the same location, (x1; y1) = (x2; y2). We name

this case full agglomeration, which we will deal with in Subsection 4.2.

At last, there is another possibility: the public �rm locate on one axis but

not on the other axis. For example, suppose that x0 = 0 and y0 6= 0. In this

case, x2 = �x1 must hold, but the symmetry with regard to y-coordinate

has broken down. Again from Remark 4, the private �rms would locate the

same position with regard to y-coordinate. We call it partial agglomeration.

Subsection 4.3 will see the case.

Among three cases above, central symmetry and agglomeration were

already presented in the linear-city case of MM. Meanwhile, the last case is

new.

4.1 Central symmetry

First, we focus on the possibility that the public �rm is located at the center,

(x0; y0) = (0; 0) and the private �rms are symmetrically located with regard

to the public �rm in equilibrium.

Proposition 1 Under the scheme of central symmetry, there exists a unique
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location equilibrium2 such that

(x0; y0; x1; y1; x2; y2) = (0; 0;�2=3;�2=3; 2=3; 2=3):

Proof. See the appendix.

This equilibrium corresponds to the equilibrium in MM (Proposition 4

(ii) in MM), where the public �rm locates at 1=2, half of the private �rms

locate at 1=10 and the others locate at 9=10 in a linear city of a line segment

[0; 1]3.

Unlike Tabuchi (1994) and Irmen and Thisse (1998), private �rms dif-

ferentiate with regard to all dimensions here. Irmen and Thisse (1998) give

us a clue how to interpret an equilibrium in multi-dimensional models:

In a symmetric equilibrium with �xed market size pro�ts are

highest when prices are highest, that is, when the elasticity of

demand is lowest. The lower the density of marginal consumers,

the lower is the elasticity. Accordingly, as the consumer dis-

tribution is uniform, demand has minimal elasticity when the

corresponding hyperplane has minimal surface area. Since the

2Remember the sentence at the top of this section. We omit other symmetric equilibria
like (x0; y0; x1; y1; x2; y2) = (0; 0; 2=3;�2=3;�2=3; 2=3) because this is essentially the same
equilibrium in this proposition.

3 If we change the space into a rectangle, f(x; y) 2 R2 : �c � x � c;�1=c � y �
1=cg(c > 1); we can �nd when c gets large, the equilibrium approaches MM�s.
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strategy space is a hypercube this hyperplane is the one that

is parallel to one of the facets, which in turn implies that the

products di¤er only in one dimension.

In this paper, when (x0; y0; x1; y1) = (0; 0;�2=3;�2=3) in Proposition

1, the length of market boundary between �rm 0 and �rm 1 is 1:88562 =

4
p
2=3. On the other hand, if (x0; y0; x1; y1) = (0; 0;�1; 0), which gives dif-

ferentiation in one dimension; the length of market boundary is 2. Therefore,

the elasticity of demand is lower in di¤erentiation in both dimensions.

Needless to say, locating at (x1; y1) = (�1;�1) minimizes the bound-

ary when (x0; y0) = (0; 0). However, Cournot competition has a relatively

stronger centripetal force (Hamilton et al., 1989; Anderson and Neven,

1991). Therefore, the tradeo¤ between these e¤ects yields our interior loca-

tion equilibrium.

4.2 Full agglomeration

Next, we analyze the possibility that the private �rms agglomerate. Un-

fortunately, due to complexity (high order of equations), it is impossible to

get the solutions analytically. Hence, we will investigate some properties of

equilibrium and conduct a numerical analysis below.

At �rst, remember that cs depends on a (@cs=@a > 0) but the pro�ts
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of the private �rms do not (Remark 2 and Remark 4). Hence, when a is

su¢ ciently large, the public �rm cares the consumer surplus much more.

Clearly, when a ! 1, the public �rm chooses (x0; y0) = (0; 0). When

(x0; y0) = (0; 0), as Subsection 4.1 shows, a private �rm would choose

(x1; y1) = (�2=3;�2=3). Because of independence from the other �rm�s

location on its pro�t, we have the following.

Proposition 2 Under the scheme of full agglomeration, we have

lim
a!1

(x0; y0; x1; y1; x2; y2) = (0; 0;�2=3;�2=3;�2=3;�2=3):

However, from Lemma 1, (x0; y0) = (0; 0) is consistent only when the

case of central symmetry. Therefore, when a is very large but not in�nity,

the public �rm would locate not at the center but near the center due to

continuity. Then, we proceed to an analysis of the �rst-order conditions,

@ss=@x0 = 0, @ss=@y0 = 0, @�i=@xi = 0 and @�i=@yi = 0 (i = 1; 2). Let

0 < � � t=a < 1

24
; (6)

then the solutions depend only on � . In the vicinity of (x0; y0; x1; y1; x2; y2) =
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(0; 0;�2=3;�2=3;�2=3;�2=3), a comparative statics yields

dx0
d�

=
dy0
d�

= 3
dxi
d�

= 3
dyi
d�

=
512

729� 2252� > 0 (i = 1; 2);

where the inequality is due to (6). This result indicates that the public �rm

locates slightly away from the center to a point on a diagonal of L while the

private �rms slightly approach the public �rm on the same diagonal when

� is su¢ ciently small (a is very large).

Unfortunately, all we can do is to proceed to a numerical analysis as a

further investigation because of analytical unsolvability. The analysis yields

the following numerical result.

Solution 3 Under the scheme of full agglomeration, the public �rm locates

near the center on a diagonal while the private �rms agglomerate at a point

on the opposite half of the diagonal with regard to the public �rm. When

� increases from zero, the public �rm goes away from the center; while the

private �rms approach the center from the point that divides internally the

half of the diagonal in the ratio of 2:1.

Figure 1 and Figure 2 around here.
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Figure 1 and Figure 2 show this result, which corresponds to an equilib-

rium of Proposition 4 (i) in MM. This result is consistent with our intuition.

The greater � becomes, the more the public �rm cares the pro�ts of the

private �rms. Suppose that all �rms are on a diagonal, then the movement

along the diagonal is the best way for separating from the private �rms with

the loss of the consumer surplus being minimized because the consumer

surplus is dependent only on the distance between the public �rm and the

center. Then, once the public �rm goes away from the center, the private

�rms have an incentive to approach the center due to relaxed competition.

4.3 Partial agglomeration

We can guess from Lemma 1 that if the public �rm locates on either x-axis

or y-axis, then there is an equilibrium where the private �rms are symmetric

with regard to that axis. Unfortunately, because the analytical unsolvability

continues, we will repeat a similar analysis as in the case of full agglomera-

tion. Without loss of generality, we only deal with the case where the public

�rm locates on y-axis (x0 = 0).

First of all, the limit case of a ! 1 yields the same outcome as in the

case of full agglomeration (Proposition 2).
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Proposition 4 Under the scheme of partial agglomeration, we have

lim
a!1

(x0; y0; x1; y1; x2; y2) = (0; 0;�2=3;�2=3; 2=3;�2=3):

Next, we proceed to an analysis in the vicinity of the limit case above.

Letting x0 = 0, a comparative statics that is evaluated at (y0; x1; y1; x2; y2) =

(0;�2=3;�2=3; 2=3;�2=3) yields

dy0
d�

=
512

729� 1996� > 0;

dx1
d�

= �dx2
d�

=
1024

2187� 5998� > 0;

dy1
d�

=
dy2
d�

= � 512

2187� 5998� < 0;

where the inequalities are due to (6). Note that

dy0
d�

:
dx1
d�

:
dy1
d�

= 1 :
2

3
: �1
3
:

Hence, when the public �rm moves slightly away from the center in the

direction of north, �rm 1 moves in the direction of southeast from (x1; y1) =

(�2=3;�2=3). A numerical analysis con�rms such a successive movement

as follows.

Solution 5 Suppose that the public �rm is on y-axis (x0 = 0). When �
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increases, the public �rm goes away from the center on y-axis while �rm 1

goes southeastern away from (�2=3;�2=3) with �rm 2 being kept symmetric

with regard to y-axis.

Figures 3-5 around here.

Figures 3-5 show this result. This solution seems somewhat di¤erent

from that in the case of full agglomeration, where the public �rm exhibits

a strong repelling e¤ect: When the public �rm approaches the center, the

private �rms move away from it. In the case of partial agglomeration, the

private �rms do move away in one dimension although they approach the

public �rm in the other dimension. The market boundary is a key to un-

derstand.

Suppose that (x1; y1) = (�2=3;�2=3). If the public �rm slightly moves

northern from the center (x0; y0) = (0; "), the boundary rotates counter-

clockwise a little bit. Hence, the northwestern markets become more com-

petitive while the southeastern markets become less competitive. Therefore,

�rm 1 has an incentive to move southeastern, by which the �rm can avoid

keen competition.
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4.4 Welfare implications

We compute the consumer surplus, the pro�ts, and the social surplus in

equilibrium. Note that only consumer surplus depends on a; the greater a

becomes, the greater the consumer surplus. Meanwhile, b is just a multiplier

for each value. Let CSj , PSj and SSj (j = sym; agg; par) denote consumer

surplus, producer surplus (pro�ts) and social surplus, respectively; where

sym; agg; par denote the three cases (central symmetry, full agglomeration,

partial agglomeration in order). Then, we have the following result.

Solution 6 CSagg < CSpar < CSsym, PSagg > PSpar > PSsym for each

t=a. The di¤erence between each pair is increasing in t. SSagg 7 SSpar 7

SSsym when a ? ~a(t), where ~a(t) is a threshold of a function of t.

These orders are quite intuitive. Because the consumer surplus is max-

imized when the public �rm locates at the center, central symmetry makes

the consumer surplus maximal. On the other hand, roughly speaking, be-

cause the private �rms�pro�ts increase when the public �rm goes away from

the center, central symmetry minimizes the producer surplus. Hence, social

surplus depends on which surplus is more important. If a is su¢ ciently large,

consumer surplus is dominant. Therefore, central symmetry maxmizes the

social surplus when a is su¢ ciently large.
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5 Conclusion

We have analyzed an extended model of spatial mixed oligopoly. We have

had some similar results as in a linear city of MM (Proposition 1 and Solution

3). As a new result, we have Solution 5, where the private �rms di¤erentiate

only in one dimension. Further, the reactions of the �rms to a change of

transport costs are analyzed. In our two-dimensional model, when the public

�rm approaches a private �rm, the private �rm can more di¤erentiate in a

dimension while it less di¤erentiates in the other.
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APPENDIX

Proof of Lemma 1

Proof. Di¤erentiating the social surplus with regard to x0 and evaluating

it at x0 = 0, we have

@ss

@x0

����
x0=0

= �32t
2

3b
(x1 + x2) :

The �rst-order condition requires x1 + x2 = 0. Furthermore, using (2),

we can readily con�rm @2ss=@x20 < 0. Therefore, for x0 = 0 to be an

equilibrium, x1 + x2 = 0 is required.

Conversely, assume that x1 + x2 = 0. Then, we have

@ss

@x0

����
x2=�x1

= �8t
2

b

�
a=t+ 4x21 + 2y

2
1 + 2y

2
2 � 5x20 � 5y20 � 4

�
x0:

Because a=t > 24 from (2), the value of the parenthesis is positive. There-

fore, ss is maximized at x0 = 0.

Hence, the public �rm locates at x0 = 0 if and only if x1 + x2 = 0. Due

to symmetry, we can apply identical analysis with regard to y-coodinate.
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Proof of Proposition 1

Proof. Without loss of generality we assume that �1 � y1 � x1 � 0 with

(x2; y2) = (�x1;�y1). First, when (x1 � 1)2 + (y1 + 1)2 � 2, the boundary

of d0(x; y) = d1(x; y) intersects the lines of x = �1 and y = �1. Hence, �rm

1�s pro�t is given by

�1 =
t2
h
(x0 + 1)

2 + (y0 + 1)
2 � (x1 + 1)2 � (y1 + 1)2

i4
48b (x0 � x1) (y0 � y1)

and due to symmetry, �rm 2�s pro�t is

�2 =
t2
h
(x0 + 1)

2 + (y0 + 1)
2 � (�x1 + 1)2 � (�y1 + 1)2

i4
48b (x0 + x1) (y0 + y1)

:

Then, the social surplus is given by

ss = cs+�1 +�2;

where cs is given by (4). We can readily show that ss is maximized at

(x0; y0) = (0; 0) from the �rst-order and the second-order conditions for

the public �rm. Next, the �rst-order conditions for �rm 1 evaluating at
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(x0; y0) = (0; 0) and (x2; y2) = (�x1;�y1) yield the following equations:

6x1 + 7x
2
1 � 2y1 � y21 = 0; 6y1 + 7y21 � 2x1 � x21 = 0:

The admissible solution is only (x1; y1) = (2=3; 2=3), which satis�es the

second-order condition.

Second, when (x1 � 1)2 + (y1 + 1)2 < 2, the boundary of d0(x; y) =

d1(x; y) intersects the lines of x = 1 and x = �1. Similar calculation yields

the social surplus and the pro�ts, and we can show that no interior solutions

exist for pro�t maximization and the pro�t functions are di¤erentiable at

eah point on d0(x; y) = d1(x; y). Therefore, the location pair of (x0; y0) =

(0; 0); (x1; y1) = (�2=3;�2=3); (x2; y2) = (2=3; 2=3) is a unique equilibrium

when �1 � y1 � x1 � 0. Clearly, due to symmetry, we have the result.
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Figure 1: The location of the public firm. (The horizontal axis shows 
t/a and the vertical axis shows x0(= y0).)
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Figure 2: The location of the private firm. (The horizontal axis 
shows t/a and the vertical axis shows x1(= y1).)
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Figure 3: The location of the public firm given x0 = 0. (The horizontal axis 
shows t/a and the vertical axis shows y0.)

Figure 4: The location of the private firm. (The horizontal axis shows t/a  
and the vertical axis shows y1.)

Figure 5: The location of the private firm. (The horizontal axis shows t/a  
and the vertical axis shows x1.)
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