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Abstract

This paper analyzes a spatial Cournot competition model in a two-

dimensional rectangular city. Consequently, there exists a unique spatial

equilibrium such that both �rms agglomerate in the center of the city with

su¢ ciently low transport costs.
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1 Introduction

Hotelling�s (1929) seminal work showed that duopolistic �rms agglomerate in

the center of a one-dimensional space (a linear city). Hamilton et al. (1989)

and Anderson and Neven (1991) developed location-then-quantity (Cournot)
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competition models rather than Bertrand ones. They then showed the agglom-

eration of �rms in the center, while spatial Bertrand competition shows no

agglomeration (see, e.g., d�Aspremont et al. (1979)).

This paper extends such a spatial Cournot competition model to a two-

dimensional rectangular city.1 Maldonado et al. (2005) have already shown

that both �rms agglomerate in the center when the space is a disk (a circular

city). However, such a circular city is di¢ cult to interpret when we consider

the space to be a characteristic one instead of a geographical one. Further,

because the ratio of the length to the breadth of our rectangle can vary, our

model contains more types of spaces. That is why the analysis of a rectangular

city has merit.

We consider a location-then-quantity competition game involving duopolists;

then, we show the same result of central agglomeration with su¢ ciently low

transport costs. In other words, the central agglomeration is robust in a spatial

Cournot competition for a wide range of spaces.

2 The model

We consider a city expressed by a rectangle, L = f(x; y) 2 R2 : �lx=2 � x �

lx=2;�ly=2 � y � ly=2g, where lx and ly are constants (lx � ly) and consumers

are uniformly and continuously distributed with a density of one at each location

on L. The total mass of the consumers is normalized to one; thus, we can rewrite

1With regard to spatial Bertrand competition models in a multiple dimensional space, see,
e.g., Tabuchi (1994) and Irmen and Thisse (1998).
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lx = l and ly = 1=l (l � 1). There are two �rms (�rm 1 and �rm 2) that supply a

homogeneous good with zero marginal costs and engage in Cournot competition.

Each consumer has the same inverse demand function as follows:

P = a� bQ; Q = q1 + q2; (1)

where P is the price, qi (i = 1; 2) is �rm i�s supply amount and a; b are para-

meters.

Based on the literature, subgame perfection is adopted as the equilibrium

concept, and we consider a two-stage location-then-quantity game. We assume

that the �rms bear transport costs and they can set a supply amount for each

location independently because arbitrage between consumers is assumed to be

prohibitively costly. Further, the transport costs are the same for the �rms

and are linear to the supply amount. The unit transport cost for �rm i is only

dependent on the Euclidean distance di to a consumer and is quadratic with

regard to the distance. Hence, the cost function is given by td2i , where t is a

transport cost parameter and is assumed to be su¢ ciently low such that

a > 2t
�
l2x + l

2
y

�
= 2t

�
l2 +

1

l2

�
; (2)

which ensures that both �rms serve the entire city, irrespective of the locations

of the �rms.2 Let �rm i�s location be (xi; yi) 2 L; then, the distance between a

2When the �rms are diagonally located at the vertexes (e. g., (x1; y1) = (lx=2; ly=2) and
(x2; y2) = (�lx=2;�ly=2)), in which the distance between �rms is maximized, a �rm must
serve at a location of the rival �rm. This condition ensures such a positive supply with the
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consumer at (x; y) 2 L and �rm i is

di(x; y) = [(xi � x)2 + (yi � y)2]1=2:

First, we analyze the second-stage game by backward induction. From (1),

the local pro�t for �rm i at point (x; y) is

�i(x; y) = qi(x; y)
�
P (x; y)� tdi(x; y)2

�
(3)

By solving the �rst-order conditions: @�i(x; y)=@qi(x; y) = 0, we have the equi-

librium quantity for �rm i at (x; y) as follows:

qi(x; y) =
a� 2tdi(x; y)2 + tdj(x; y)2

3b
for i; j 2 f1; 2g; i 6= j: (4)

Then, the equilibrium local pro�t is

�i(x; y) = b [qi(x; y)]
2 for i; j 2 f1; 2g; i 6= j;

where qi(x; y) is de�ned by (4). Hence, the total pro�t for �rm i is given by

�i(xi; yi) =

ZZ
L

�i(x; y)dxdy: (5)

equilibrium quantity in (4).
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3 The result: location equilibrium

We analyze the �rst-stage game given the results in the second stage. We

propose the three lemmas below.

Lemma 1 The central agglomeration (x1 = y1 = x2 = y2 = 0) is a Nash

equilibrium.

Proof. We assume that �rm 2 is located at the center (x2 = y2 = 0). Then,

we have

27bl2

t
[�1(0; 0)��1(x1; y1)]

= 12al2
�
x21 + y

2
1

�
� t

�
12l2x4 + x21

�
1 + 5l4 + 24l2y21

�
+ y21

�
5 + l4 + 12l2y21

��
> tx21

�
23 + 19l4 � 12l2x21 � 24l2y21

�
+ ty21

�
19 + 23l4 � 12l2y21

�
� tx21

�
23 + 19l4 � 3l4 � 6

�
+ ty21

�
19 + 23l4 � 3

�
> 0

for all x1 6= 0; y1 6= 0, where the �rst inequality is due to (2) and the �rst

inequality is due to 0 < x21 � l2=4 and 0 < y21 � 1=4l2. Hence, x1 = y1 = 0

is the unique best response to x2 = y2 = 0. Because of the symmetry with

respect to the �rms, it is clear that x2 = y2 = 0 is the unique best response to

x1 = y1 = 0.

Lemma 2 It cannot be a Nash equilibrium unless at least one �rm locates on

an axis.
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Proof. Without loss of generality, we assume that 0 < x2 � l=2, 0 < y2 �

1=2l and x21 + y
2
1 � x22 + y

2
2 . First, when x1 > 0 or y1 > 0, we have either

�1(�x1; y1) > �1(x1; y1) or �1(x1;�y1) > �1(x1; y1) for all x2; y2. Second,

when x1 < 0 and y1 < 0, we can show that �1(0; y1) > �1(x1; y1) for all x2; y2

if y1 � x1=l2 and �1(x1; 0) > �1(x1; y1) for all x2; y2 if otherwise. Hence, the

case of x1 6= 0; y1 6= 0; x2 6= 0; y2 6= 0 cannot be an equilibrium.

Lemma 3 It cannot be an equilibrium in which a �rm locates on an axis except

for the central agglomeration.

Proof. We assume (without loss of generality) that �rm 2 is on an axis (x2 =

0 or y2 = 0). First, when x2 = 0, we have �1(0; y1) > �1(x1; y1) for all

x1 6= 0; y1; y2. Second, when y2 = 0, we obtain �1(x1; 0) > �1(x1; y1) for all

x1; y1 6= 0; x2. These facts have shown that it cannot be an equilibrium unless

both �rms are located on the same axis. Next, we consider such cases.

Consider that x1 = x2 = 0. We assume (without loss of generality) that

jy1j � jy2j. Then, we have �1(0; 0) > �1(0; y1) for all y1 6= 0, y2. Thus, there is

an incentive for a �rm that is nearer to the center to move into the center, which

shows the case that no �rm is located at the center cannot be an equilibrium.

Further, when a �rm (without loss of generality, �rm 2) is located at the center,

we readily have �1(0; 0) > �1(0; y1) for all y1 6= 0. Hence, it cannot be an

equilibrium unless both �rms are located at the center when x1 = x2 = 0.

When y1 = y2 = 0, a similar calculation shows that it cannot be an equi-

librium unless both �rms are located at the center. Thus, we have the lemma.
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Clearly, Lemma 1, Lemma 2 and Lemma 3 have established our main result

as follows.

Proposition 1 The central agglomeration is the unique Nash location equilib-

rium.

4 Conclusion

We have shown that the central agglomeration result is as robust in a rectangular

space as in a linear one or a circular one. This suggests that �rms have a

stronger incentive to reduce transport costs by establishing a central location

that provides better access to consumers than to relax competition by locational

dispersion in a spatial Cournot competition.
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